专利名称: | 车辆 | ||
专利名称(英文): | Vehicle | ||
专利号: | CN201410525909.9 | 申请时间: | 20141009 |
公开号: | CN104553821A | 公开时间: | 20150429 |
申请人: | 福特全球技术公司 | ||
申请地址: | 美国密歇根州迪尔伯恩市 | ||
发明人: | 于海; 凯雷姆·巴亚尔; 戴尔·斯科特·克劳姆贝兹 | ||
分类号: | B60L7/26; B60T8/176 | 主分类号: | B60L7/26 |
代理机构: | 北京铭硕知识产权代理有限公司 11286 | 代理人: | 刘奕晴; 鲁恭诚 |
摘要: | 本发明提供一种车辆。所述车辆可以是一种包括至少一个车轮、摩擦制动器、电机和至少一个控制器的混合动力电动车辆。摩擦制动器结合到车轮并被构造为提供摩擦制动扭矩,电机结合到车轮并被构造为提供再生制动扭矩。所述控制器被配置为在防抱死制动事件期间命令电机提供再生制动扭矩,以满足所需的防抱死车轮制动扭矩的低频扭矩分量或高频扭矩分量。 | ||
摘要(英文): | A hybrid electric vehicle includes at least one wheel, a friction brake, a motor, and at least one controller. The friction brake is coupled to the wheel and configured to provide friction brake torque, and the motor is coupled to the wheel and configured to provide regenerative brake torque. The controller is configured to command the motor to provide a regenerative brake torque to satisfy a low frequency torque component or a high frequency torque component of a required antilock wheel brake torque during an antilock braking event. |
1.一种车辆,包括: 车轮; 摩擦制动器,结合到车轮并被构造为提供摩擦制动扭矩; 电机,结合到车轮并被构造为提供再生制动扭矩; 至少一个控制器,被配置为在防抱死制动事件期间将请求的防抱死车轮 扭矩过滤为不同的频率分量,并且命令电机提供再生制动扭矩,以满足所述 频率分量中的一个频率分量。
2.根据权利要求1所述的车辆,其中,所述频率分量中的所述一个频率 分量的频率低于所述频率分量中的其它频率分量。
3.根据权利要求1所述的车辆,其中,所述至少一个控制器还被配置为 基于车轮滑移的值,按比例调节所述频率分量中的所述一个频率分量的幅值。
4.根据权利要求1所述的车辆,其中,所述至少一个控制器还被配置为: 响应于电池荷电状态下降到低于阈值、超出电池充电极限或电池放电极限、 以及超出电机转速极限或电机扭矩极限中的至少一种,减小命令的再生制动 扭矩。
5.根据权利要求1所述的车辆,其中,所述至少一个控制器还被配置为 命令摩擦制动器提供摩擦制动扭矩,以满足所述频率分量中的其它频率分量。
1.一种车辆,包括: 车轮; 摩擦制动器,结合到车轮并被构造为提供摩擦制动扭矩; 电机,结合到车轮并被构造为提供再生制动扭矩; 至少一个控制器,被配置为在防抱死制动事件期间将请求的防抱死车轮 扭矩过滤为不同的频率分量,并且命令电机提供再生制动扭矩,以满足所述 频率分量中的一个频率分量。
2.根据权利要求1所述的车辆,其中,所述频率分量中的所述一个频率 分量的频率低于所述频率分量中的其它频率分量。
3.根据权利要求1所述的车辆,其中,所述至少一个控制器还被配置为 基于车轮滑移的值,按比例调节所述频率分量中的所述一个频率分量的幅值。
4.根据权利要求1所述的车辆,其中,所述至少一个控制器还被配置为: 响应于电池荷电状态下降到低于阈值、超出电池充电极限或电池放电极限、 以及超出电机转速极限或电机扭矩极限中的至少一种,减小命令的再生制动 扭矩。
5.根据权利要求1所述的车辆,其中,所述至少一个控制器还被配置为 命令摩擦制动器提供摩擦制动扭矩,以满足所述频率分量中的其它频率分量。
翻译:技术领域
本公开涉及具有再生制动能力并在防抱死制动系统控制事件期间产生再 生制动动力的混合动力车辆。
背景技术
混合动力电动车辆除了包括内燃发动机以外,还包括车辆牵引电机。电 机通过变速器或齿轮箱连接到至少两个车轮。电机通过齿轮箱将输出扭矩提 供至车轮,以推进车辆。电机还可通过齿轮箱从车轮接收输入扭矩,以产生 电并且制动车辆(再生制动)。电动车辆通常包括利用摩擦制动和再生制动两 者的制动系统。再生制动用于对车辆电池再充电,并且回收在摩擦制动期间 将作为热而损失的大部分能量。因此,与仅配置了摩擦制动的车辆相比较, 再生制动提高了电动车辆的总效率或燃料经济性。
在再生制动期间,车辆的防抱死制动系统(ABS)、动力传动系和道路表 面之间的相互作用会导致动力传动系的偏斜(即,动力传动系振荡)。因此, 在ABS事件期间,禁用再生制动,以避免破坏车辆的稳定。
发明内容
一种车辆包括至少一个车轮、摩擦制动器、电机和至少一个控制器。摩 擦制动器结合到车轮并被构造为提供摩擦制动扭矩,电机结合到车轮并被构 造为提供再生制动扭矩。控制器被配置为在防抱死制动事件期间将请求的防 抱死车轮扭矩过滤为不同的频率分量,并且命令电机提供再生制动扭矩,以 满足所述频率分量中的一个频率分量。
控制器命令电机提供的所述频率分量中的所述一个频率分量的频率可低 于所述频率分量中的其它频率分量的频率。控制器可被配置为响应于车轮滑 移的值,按比例调节所述频率分量中的所述一个频率分量的幅值。控制器可 被配置为:响应于电池荷电状态下降到低于阈值、超出电池充电极限或电池 放电极限、以及超出电机转速极限或电机扭矩极限中的至少一种,减小命令 的再生制动扭矩。控制器还可被配置为命令摩擦制动器提供摩擦制动扭矩, 以满足频率分量中的其它频率分量。
一种用于控制混合动力电动车辆的方法包括:将所需的防抱死车轮制动 扭矩过滤为第一频率分量和第二频率分量。第一频率分量的频率高于第二频 率分量的频率。所述方法另外包括:命令摩擦制动器和电机中的一个提供满 足第一频率分量的扭矩,并且命令摩擦制动器和电机中的另一个提供满足第 二频率分量的扭矩,其中,摩擦制动器和电机均结合到车轮。
在所述方法的一个实施例中,命令摩擦制动器提供摩擦制动扭矩从而满 足第一频率分量,命令电机提供再生制动扭矩从而满足第二频率分量。在这 一实施例中,将所需的防抱死车轮制动扭矩分解为第一频率分量和第二频率 分量的操作可包括:使用低通滤波器对所需的防抱死车轮制动扭矩过滤,并 且根据车轮滑移的值按比例调节过滤后的防抱死车轮制动扭矩,以获得第二 频率分量。命令摩擦制动器满足第一频率分量的操作可包括:命令摩擦制动 器提供等于所需的防抱死车轮制动扭矩减去命令的再生制动扭矩的一个百分 比的摩擦制动扭矩。所述方法可包括:响应于电池荷电状态下降到低于阈值、 超出电池充电极限或电池放电极限和超出电机转速极限或电机扭矩极限中的 至少一种,减小命令的再生制动扭矩。
在所述方法的另一个实施例中,命令摩擦制动器提供摩擦制动扭矩以满 足第二频率分量,命令电机提供再生制动扭矩以满足第一频率分量。在这一 实施例中,将所需的防抱死车轮制动扭矩分解为第一频率分量和第二频率分 量的操作可包括:使用低通滤波器对所需的防抱死车轮制动扭矩过滤以获得 第二频率分量。命令电机提供再生制动扭矩的操作可包括命令电机提供等于 所需的防抱死车轮制动扭矩减去过滤后的防抱死车轮制动扭矩的扭矩。命令 摩擦制动扭矩以满足第二频率分量的操作可包括命令摩擦制动器提供等于所 需的防抱死车轮制动扭矩减去命令的再生制动扭矩的一个百分比的摩擦制动 扭矩。所述方法可包括:响应于电池荷电状态下降到低于阈值、超出电池充 电极限或电池放电极限和超出电机转速极限或电机扭矩极限中的至少一种, 减小命令的再生制动扭矩。所述方法可另外包括使用带阻滤波器对所需的防 抱死车轮制动扭矩过滤,以消除激发(excite)车辆动力传动系的频率分量。
一种混合动力电动车辆包括:车轮、摩擦制动器、电机和至少一个控制 器。摩擦制动器结合到车轮并被构造为提供摩擦制动扭矩,电机结合到车轮 并被构造为提供再生制动扭矩。控制器被配置为使用低通滤波器对所需的防 抱死车轮制动扭矩过滤,并且根据所需的防抱死车轮制动扭矩与过滤后的防 抱死车轮制动扭矩的差命令电机提供再生制动扭矩。
控制器可被配置为命令摩擦制动器提供等于防抱死车轮制动扭矩减去命 令的再生制动扭矩的一个百分比的摩擦制动扭矩。控制器可被配置为:响应 于电池荷电状态下降到低于阈值、超出电池充电极限或电池放电极限和超出 电机转速极限或电机扭矩极限中的至少一种,减小命令的再生制动扭矩。控 制器还可被配置为使用带阻滤波器对所需的防抱死车轮制动扭矩过滤,以消 除激发车辆动力传动系的频率分量。
根据本公开的实施例提供多个优点。例如,根据本公开的防抱死制动系 统在防抱死制动事件期间提供再生制动、回收动能并将动能作为电能储存, 并且降低摩擦制动器的磨损。本公开的实施例还提供了相对于现有技术方法 的减小的停车距离。
通过下面结合附图时对优选的实施例的详细描述,本公开的以上以及其 它优点和特征将变得很明显。
附图说明
图1是示出了现有技术中在防抱死制动事件期间摩擦制动和再生制动特 性的示图。
图2示出了根据本公开的具有防抱死制动系统的车辆。
图3是示出了根据本公开在防抱死制动事件期间摩擦制动和再生制动操 作的实施例的图表。
图4示出了根据本公开的用于控制摩擦制动扭矩和再生制动扭矩的控制 系统的实施例。
图5是示出了根据本公开在防抱死制动事件期间摩擦制动和再生制动操 作的另一实施例的图表。
图6示出了根据本公开的用于控制摩擦制动扭矩和再生制动扭矩的控制 系统的另一实施例。
图7a和图7b示出了根据本公开的多个实施例在防抱死制动事件期间的 车轮滑移。
具体实施方式
在此描述了本公开的实施例。然而,应理解的是,所公开的实施例仅为 示例,并且其它实施例可以以多种和替代形式实施。附图无需按比例绘制; 可放大或缩小一些特征以示出特定部件的细节。因此,在此所公开的具体结 构和功能细节不应解释为限制,而仅为用于教导本领域技术人员以多种形式 实施本发明的代表性基础。如本领域的普通技术人员将理解的是,参照任一 附图示出和描述的多个特征可与一个或更多个其它附图中示出的特征相组 合,以产生未明确示出或描述的实施例。示出的特征的组合提供用于典型应 用的代表实施例。然而,与本公开的教导一致的特征的多种组合和变型可被 期望用于特定应用或实施。
混合动力电动车辆或电动车辆包括用于向车辆牵引车轮提供扭矩的至少 一个牵引电机。牵引电机可以被设置为多种构造,诸如:轮毂电机,在牵引 车轮的轮毂处提供扭矩;轴电机,向车轴提供扭矩,接着车轴将扭矩传递至 牵引车轮。这样的电机可以被构造为用作发电机,并且在制动事件期间提供 再生制动扭矩。在这样的制动事件期间,所需的车轮扭矩在摩擦制动器和用 作发电机的电机之间进行分配。通过控制器实时计算车轮制动扭矩在摩擦制 动扭矩与再生制动扭矩之间的分配。所述控制器被配置为通过制动程序来均 衡各个扭矩,以实现尽可能多的再生制动扭矩。因此,车轮的动能的一部分 可被回收并作为电能储存。
参照图1,示出了现有技术中在防抱死制动事件期间摩擦制动和再生制 动行为的示图。如在10处所示,在防抱死制动事件期间,施加到牵引车轮的 总制动扭矩的值以振荡方式变化。如在12处所示,车轮转速比车辆速度更敏 感地响应于制动扭矩。随着制动扭矩增大,车轮滑移增大。总制动扭矩在防 抱死制动期间变化,以保持期望的制动力和车轮滑移值。
基于仅有摩擦制动扭矩的应用校准防抱死制动控制器。再生制动扭矩的 应用会通过对ABS振动(pulsation)增加额外的扭矩而破坏车辆的稳定。因此, 在防抱死制动事件期间,在大多数当前的再生制动实施中,再生制动扭矩降 低到近似于0(如在10处所示)。相对而言,几乎没有动能被再生制动回收 (如在14处所示)。取而代之的是,大多数动能在摩擦制动中作为热耗散, 如在16处所示。
参照图2,示出了具有防抱死制动系统的混合动力电动车辆20的示意图。 车辆20包括动力传动系控制单元22、牵引电机24、发动机26、电池28和 车辆牵引车轮30。牵引电机24和发动机26均与动力传动系控制单元22通 信或者受动力传动系控制单元22的控制,并且牵引电机24和发动机26均被 构造为向牵引车轮30提供驱动扭矩。牵引电机24电连接到电池28。在电动 驱动模式下,电池28可将电力提供到牵引电机24。牵引电机24还可将再生 制动扭矩提供到牵引车轮30,以产生电并且对电池28充电。车辆20还包括 制动踏板32、具有ABS模块36的制动控制单元34和摩擦制动器38。制动踏 板32将驾驶员制动请求传送至制动控制单元34。制动控制单元34控制摩擦 制动器38,其中,摩擦制动器38被构造为将摩擦制动扭矩供应至牵引车轮 30。制动控制单元34还与动力传动系控制单元22通信。制动控制单元34可 将再生制动请求传送至动力传动系控制单元22。响应于这一请求,动力传动 系控制单元22将命令牵引电机24向牵引车轮30提供再生制动扭矩。简言之, 制动控制单元34协调摩擦制动扭矩和再生制动扭矩,以提供期望的总制动扭 矩,从而满足驾驶员制动请求。当然,其它构造也是可能的。
参照图3,示出了根据本公开的用于控制摩擦制动扭矩和再生制动扭矩 的控制系统。ABS模块36’接收指示所请求的防抱死制动扭矩的信号。这一请 求可来自例如制动控制单元。ABS系统36’计算用于前左车轮的制动扭矩 Tq_fl、用于前右车轮的制动扭矩Tq_fr、用于后左车轮的制动扭矩Tq_rl、用 于后右车轮的制动扭矩Tq_rr、前左车轮滑移S_fl以及前右车轮滑移S_fr。在 操作40处,选择Tq_fl和Tq_fr的最小值并将该最小值用作控制扭矩。通过 低通滤波器42过滤该控制扭矩。过滤后的控制扭矩可被理解为是所需的防抱 死制动扭矩的低频分量。在并行操作中,在操作44处,选择S_fl和S_fr的 最大值并且利用该最大值产生增益参数K。增益参数K相对于操作44处所选 择的最大车轮滑移成反比例地从0至1变化。在高的车轮滑移下,K将减小 到0或者接近于0的值,而在低的车轮滑移下,K将增大到1或者接近于1 的值。在操作46处,利用增益参数K按比例调节过滤后的控制扭矩。因此, 在高的车轮滑移值下,将降低所述过滤后的控制扭矩,以避免干扰摩擦制动 ABS性能。接着,操作进行到扭矩限制器48。如果命令按比例调节后的控制 扭矩导致各种监测参数中的一个参数超出相关的阈值,则扭矩限制器48可降 低按比例调节后的控制扭矩。所述参数包括(但不限于)电池荷电状态SOC、 电池放电极限Emp_dch_lmg、电池充电极限Emp_chg_lmt、电机转速Mot_spd 和电机扭矩极限Mot_tq_lmg。按照这种方式,所述操作防止了电池过充电、 电机超速以及其它不期望的影响。扭矩限制器48输出电机再生制动扭矩 τbrk_regen。命令牵引电机,将等于τbrk_regen的再生制动扭矩提供至车辆牵引车轮。 命令前左摩擦制动器提供摩擦制动扭矩τbrk_fl(其中,τbrk_fl等于Tq_fl减去 τbrk_regen的一半),命令前右摩擦制动器提供摩擦制动扭矩τbrk_fr(其中,τbrk_fr等于Tq_fr减去τbrk_regen的一半)。由于低频扭矩分量已经从各自的制动扭矩 中减去,因此,摩擦制动器可被理解为采用所请求的制动扭矩的高频扭矩分 量。命令后左摩擦制动器施加等于Tq_rl的摩擦制动扭矩τbrk_rl,命令后左摩 擦制动器施加等于Tq_rr的摩擦制动扭矩τbrk_rr。
参照图4,示出了根据本公开的实施例的摩擦制动和再生制动操作的示 图。如在50和52处所示,所施加的总制动扭矩的值和频率与现有技术方法 的值和频率一致,因此,车辆和车轮以相似的方式减速。与现有技术方法对 比,在制动事件期间,通过牵引电机施加再生制动扭矩。牵引电机提供再生 制动扭矩,以满足总制动扭矩中的低频分量,摩擦制动器提供摩擦制动扭矩, 以满足高频分量。如在54和56处所示,相对于现有技术方法而言,动能的 增加的量是通过再生制动回收的,动能的减小的量作为热耗散。
参照图5,示出了根据本公开的用于控制摩擦制动扭矩和再生制动扭矩 的控制系统的另一实施例。ABS模块36”接收指示所请求的防抱死制动扭矩的 信号。ABS模块36”是高性能ABS模块,该高性能ABS模块适于命令扭矩以相 对于传统的ABS模块增高的频率振荡。所述请求可来自例如制动控制单元。 ABS系统36”计算用于前左车轮的制动扭矩Tq_fl、用于前右车轮的制动扭矩 Tq_fr、前左车轮滑移S_fl以及前右车轮滑移S_fr。在操作58处,确定S_fl 和S_fr的最大值,并且在操作60处将该最大值用于选择相关联的制动扭矩 (左或右)。所选择的扭矩用作受控扭矩τbrk_ctrl,其它扭矩用作非受控扭矩 τbrk_unctrl。在操作62处通过带阻滤波器对τbrk_ctrl进行过滤。带阻滤波器被构造 为阻止可能激发动力传动系的谐波频率分量。操作62另外向ABS模块36”提 供指示这一频率分量的反馈信号。如果这一频率分量存在,则ABS模块36” 被配置为调节制动扭矩信号Tq_fl和Tq_fr的频率。在操作64处,另外通过 宽带低通滤波器W-LPF过滤τbrk_ctrl。接着,利用过滤后的控制扭矩产生参数 Kb。参数Kb从0至1变化,并且表示控制扭矩的可被分配至摩擦制动器的被 过滤后的部分(下面将进行描述)。还计算τbrk_ctrl与τbrk_unctrl之间的差并用以 产生参数Ks。Ks是用于表示因左车轮和右车轮之间的扭矩差而保留(reserve) 摩擦制动扭矩的一部分的扭矩仲裁参数(下面将进行描述)。Tfb_min是表示 在控制过程中所保留的最小的摩擦制动扭矩的常数。Tfb_min可以是零,但 优选地Tfb_min是小值,以避免液压制动初始化延迟。在操作66处选择Kb、 Ks和Tfb_min的最大值,并在操作68处将该最大值从过滤后的控制扭矩中 减去。因此,为摩擦制动器保留一部分扭矩,以满足上面讨论的三个需求。 通过低通滤波器70过滤所得的扭矩。过滤后的扭矩可被理解为是所需的防抱 死制动扭矩的低频分量。响应于所测量的值超出与多个监测参数中的一个相 关联的阈值,动力传动系扭矩限制器/增强器(booster)可产生扭矩限制信号 或扭矩增强信号。这些参数包括(但不限于)电池荷电状态、电池放电极限 Emp_dch_lmg、电池充电极限Emp_chg_lmt、电机转速Mot_spd和电机扭矩 极限Mot_tq_lmg。按照这种方式,动力传动系扭矩限制器/增强器72产生用 于防止电池过充电、电机超速以及其它不良影响的信号。将来自动力传动系 扭矩限制器/增强器72的信号添加到从LPF 70输出的过滤后的扭矩。接着, 操作行进到操作74,在操作74处,将所述信号与所述过滤后的扭矩的总和 从操作68处所得的扭矩中减去,以获得再生制动扭矩τbrk_regen。由于减去了 通过LPF 70过滤的扭矩,所以τbrk_regen可被理解为是包含受控制动扭矩的高 频分量。命令牵引电机,将等于τbrk_regen的再生制动扭矩提供至车辆牵引车轮。 命令前左摩擦制动器,提供摩擦制动扭矩τbrk_fl(其中,τbrk_fl等于Tq_fl减去 τbrk_regen的一半),命令前右摩擦制动器提供摩擦制动扭矩τbrk_fr(其中,τbrk_fr等于Tq_fr减去τbrk_regen的一半)。由于低频扭矩分量已经从各自的制动扭矩中 减去,因此,摩擦制动器可被理解为施加所请求的制动扭矩的高频扭矩分量。 命令后左摩擦制动器,施加等于Tq_rl的摩擦制动扭矩τbrk_rl,命令后左摩擦 制动器施加等于Tq_rr的摩擦制动扭矩τbrk_rr。
参照图6,示出了根据本公开的实施例的摩擦制动和再生制动操作的示 图。如76处所示,所施加的总制动扭矩的值与现有技术方法中的值一致。然 而,由于电机的相对于摩擦制动控制装置的更高的带宽能力,扭矩振荡的频 率相对于现有技术方法而增高。如下面所描述,这允许车轮滑移被控制在相 对于最佳滑移的更窄的滑移范围内。如78处所示,相对于现有技术方法,车 轮转速以更高的频率和更低的幅值(magnitude)振荡。与现有技术方法相比, 在制动事件期间,通过牵引电机施加再生制动扭矩。牵引电机提供再生制动 扭矩,以满足所请求的总制动扭矩中的高频分量,摩擦制动器提供摩擦制动 扭矩,以满足低频分量。注意,如果再生制动扭矩的幅值(magnitude)减小, 那么由于可能发生扭矩限制器/增强器72限制电机扭矩,所以即使在低幅值 (magnitude)下,电机也仍然可满足所需的制动扭矩的高频分量。如80和82 处所示,相对于现有技术方法,动量的增大的量通过再生制动而被回收,动 能的减少的量作为热而耗散。
参照图7a和图7b,示出了在防抱死制动事件期间车轮滑移和轮胎制动 力的示图。图7a示出了防抱死制动系统中的车轮滑移,其中,该防抱死制动 系统利用摩擦制动器提供防抱死制动扭矩的高频分量。点84指示针对最优化 车辆停车距离的车轮滑移值。根据摩擦制动扭矩的变化频率,允许车轮滑移 在关于最优的车轮滑移值84的范围内变化。针对这一系统的滑移范围与现有 技术系统的范围相当。图7b示出了在防抱死制动系统中的车轮滑移,其中, 该防抱死制动系统利用牵引电机提供防抱死制动扭矩的高频分量。点84’指示 最佳车轮滑移值。由于牵引电机的带宽增大,所以相对于图7a中所示的系统, 车轮滑移被控制在关于点84’的更窄范围内。再生制动扭矩可以按照比摩擦制 动扭矩更高的速率变化,因此,车轮滑移可被控制为更接近于最佳车轮滑移 值84’,从而获得更短的车辆停车距离。
在此公开的程序、方法或算法可被传送到处理装置、控制器或计算机/ 通过处理装置、控制器或计算机实现,所述处理装置、控制器或计算机可包 括任何现有的可编程电子控制单元或者专用的电子控制单元。类似地,所述 程序、方法或算法可以以多种形式被存储为可被控制器或计算机执行的数据 和指令,所述多种形式包括(但不限于)信息被永久地存储在非可写存储介 质(诸如,ROM装置)上以及信息被可变地存储在可写存储介质(诸如,软盘、 磁带、CD、RAM装置以及其它磁介质和光学介质)上。所述程序、方法或算 法还可被实现为软件可执行对象。可选地,所述程序、方法或算法可利用合 适的硬件组件(诸如,专用集成电路(ASIC)、现场可编程门阵列(FPGA)、状态 机、控制器或其它硬件组件或装置)或者硬件、软件和固件组件的结合被整体 或部分地实施。
从多个实施例中可以看出,本公开描述了一种能够在防抱死制动事件期 间进行再生制动、回收动能并将动能作为电能储存并且降低摩擦制动器的磨 损的防抱死制动系统。本公开的实施例还提供了相对于现有技术方法的减小 的停车距离。
如上所述,可组合多个实施例的特征以形成本发明的可能未明确描述或 示出的进一步的实施例。虽然多个实施例已被描述为提供优点或者可在一个 或更多个期望的特性方面优于其它实施例或现有技术实施方式,但是本领域 的普通技术人员应该认识到,一个或更多个特征或特点可被折衷,以实现期 望的整体系统属性,所述期望的整体系统属性取决于具体的应用和实施方式。 这些属性可包括(但不限于)成本、强度、耐久性、生命周期成本、可销售 性、外观、包装、尺寸、维护保养方便性、重量、可制造性、装配容易性等。 因此,被描述为在一个或更多个特性方面不如其它实施例或现有技术实施方 式的实施例并不在本公开的范围之外并且可被期望用于特殊的应用。