专利名称: | 发电模式优化 | ||
专利名称(英文): | |||
专利号: | CN201610059245.0 | 申请时间: | 20160128 |
公开号: | CN105818807A | 公开时间: | 20160803 |
申请人: | 福特全球技术公司 | ||
申请地址: | 美国密歇根州迪尔伯恩市 | ||
发明人: | 布莱恩·托马斯·秀; 沃尔特·约瑟夫·欧特曼; 马文·保罗·克拉斯卡; 迈克尔·D·华莱士 | ||
分类号: | B60W10/26; B60W10/06; B60W10/08; B60W20/10 | 主分类号: | B60W10/26 |
代理机构: | 北京铭硕知识产权代理有限公司 11286 | 代理人: | 王秀君; 马翠平 |
摘要: | 本公开涉及一种发电模式优化。提供一种车辆包括具有电机、发动机、牵引电池和控制器的动力传动系统。所述控制器可被配置为:响应于牵引电池荷电状态小于阈值同时牵引电池正在向车辆外部的装置供电,使动力传动系统运转以以基于环境温度的速率为牵引电池充电,而不考虑由所述装置请求的电力负载。 | ||
摘要(英文): |
1.一种车辆,包括: 包括电机和发动机的动力传动系统; 牵引电池;和 控制器,被配置为:响应于牵引电池的荷电状态小于阈值同时牵引电池 正在为车辆外部的装置供电,使动力传动系统运转以按照基于环境温度的速 率为牵引电池充电,而不考虑由所述装置请求的电力负载。
2.根据权利要求1所述的车辆,其中,所述速率随着环境温度的增加而 减小。
3.根据权利要求1所述的车辆,其中,所述速率还是基于发动机的燃料 消耗率和转速的。
4.根据权利要求1所述的车辆,其中,所述速率还是基于牵引电池温度 的。
5.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为基于 牵引电池的温度而降低所述速率。
6.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为基于 电机的转速而降低所述速率。
7.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为:响 应于所述荷电状态接近上阈值,降低所述速率。
1.一种车辆,包括: 包括电机和发动机的动力传动系统; 牵引电池;和 控制器,被配置为:响应于牵引电池的荷电状态小于阈值同时牵引电池 正在为车辆外部的装置供电,使动力传动系统运转以按照基于环境温度的速 率为牵引电池充电,而不考虑由所述装置请求的电力负载。
2.根据权利要求1所述的车辆,其中,所述速率随着环境温度的增加而 减小。
3.根据权利要求1所述的车辆,其中,所述速率还是基于发动机的燃料 消耗率和转速的。
4.根据权利要求1所述的车辆,其中,所述速率还是基于牵引电池温度 的。
5.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为基于 牵引电池的温度而降低所述速率。
6.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为基于 电机的转速而降低所述速率。
7.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为:响 应于所述荷电状态接近上阈值,降低所述速率。
翻译:技术领域
本公开涉及用于优化发动机性能的系统和方法。
背景技术
混合动力电动车辆可包括具有发动机和可运转地连接到电池的马达-发 电机的动力传动系统。电池可被配置为提供用于推进车辆的电力和提供不用 于推进车辆的电力。所述不用于推进车辆的电力可被供应至外部装置(诸如, 锯、钻或其它电动工具)。在电力供应至外部装置时,发动机、马达-发电机 和/或电池可运转。发动机和马达-发电机可基于由外部装置请求的功率的量而 循环的开启和关闭。
发明内容
车辆可包括具有电机、发动机的动力传动系统、牵引电池以及控制器。 所述控制器可被配置为:响应于牵引电池的荷电状态小于阈值同时牵引电池 正在为车辆外部的装置供电,使动力传动系统运转以按照基于环境温度的速 率为牵引电池充电,而不考虑由所述装置请求的电力负载。
根据本发明,提供了一种车辆,可包括发动机、牵引电池和控制器。所 述控制器可被配置为:响应于牵引电池的荷电状态接近下阈值同时牵引电池 正在为车辆外部的装置供电,使发动机运转,以按照基于发动机的燃料消耗 率和转速的预定的功率水平为牵引电池充电。
根据本发明的一个实施例,所述预定的功率水平还是基于牵引电池的温 度的。
根据本发明的一个实施例,所述车辆还包括电机,其中,所述预定的功 率水平还是基于电机的温度的。
根据本发明的一个实施例,所述预定的功率水平还是基于环境温度的。
根据本发明的一个实施例,所述预定的功率水平还是基于由车辆外部的 装置请求的电力负载的。
根据本发明,提供了一种控制车辆的方法,所述方法可包括:响应于牵 引电池的荷电状态接近下阈值同时牵引电池向非车载辅助装置提供电力,使 发动机和电机运转以按照基于荷电状态、电机的转速和牵引电池的温度的速 率为牵引电池充电。
根据本发明的一个实施例,所述速率还是基于电机温度的。
根据本发明的一个实施例,所述速率还是基于发动机的转速、扭矩和燃 料消耗率的。
根据本发明的一个实施例,所述方法还包括:响应于电机温度或牵引电 池的温度接近阈值,降低所述速率。
根据本发明的一个实施例,使发动机以预定的功率水平运转,而不考虑 由非车载辅助装置请求的电负载。
根据本发明的一个实施例,所述预定的功率水平是基于电机温度、牵引 电池的温度和电机的功率限制的。
附图说明
图1是混合动力电动车辆的示意图。
图2A-2C是示出示例性系统响应的时间图。
图3是用于控制车辆的示例性算法的流程图。
具体实施方式
根据需要,在此公开本发明的详细实施例;然而,应理解的是,公开的 实施例仅为本发明的示例,本发明可以以各种和替代的形式来实施。附图不 一定按比例绘制;可夸大或最小化一些特征,以示出特定组件的细节。因此, 在此公开的具体结构和功能细节不应被解释为限制,而仅作为用于教导本领 域技术人员以各种形式使用本发明的代表性基础。
参照图1,示出了根据本公开的示例性实施例的车辆10的示意图。车辆 10中组件的物理布局和方位可改变。尽管将具体描述图1的车辆,但根据本 公开的实施例的策略可应用到其它车辆配置。
车辆10可包括具有发动机14选择性地连接到传动装置16的动力传动系 统12。传动装置16可包括分离离合器18、电机20(诸如电动马达-发电机)、 关联的牵引电池22、输入轴24、变矩器26、变速箱28和输出轴30。
发动机14可通过分离离合器18选择性地机械地结合到电机20和传动装 置16的其它部分。发动机14和电机20两者都可通过将扭矩经由输入轴24 提供至变速箱28来充当用于车辆10的驱动源。电机20可由多种类型的电机 中的任意一种(诸如永磁同步马达)来实现。
变矩器26可位于电机20和变速箱28之间。变矩器26可在起步事件期 间提供扭矩倍增。变矩器26还可执行与传动系的扭转隔离器,使得传动系从 干扰中隔离。
控制器40可被配置为使车辆10或动力传动系统12以多种模式运转。控 制器可使车辆10以电荷消耗模式运转,在电荷消耗模式中发动机14可通过 分离离合器18与动力传动系统12的其它部分隔离。在电荷消耗模式中,电 机20可通过使用牵引电池22作为它的电源来充当用于车辆10的唯一驱动 源。控制器40可使车辆10以电荷保持模式运转,在电荷保持模式中发动机 14通过分离离合器18可运转地连接到动力传动系统12的其它部分。在电荷 保持模式中,发动机14和电机20可充当用于车辆10的驱动源。
控制器40可被配置为使车辆10或动力传动系统12以发电模式运转,在 发电模式中电力被供应至装置50。装置50可以是车辆10外部的装置(诸如, 电动工具、锯、钻、焊接装置或其它需要电的装置)。为了向装置50提供电 力,车辆10可包括电力转换器52。电力转换器52可集成到牵引电池22中 或设置为如图1中所示的独立部件。
电力转换器52可以是降压或升压转换器(或降压或升压变压器)。在至 少一个实施例中,电力转换器可以是被配置为接收来自电机20的高电压AC 电或来自牵引电池22的高电压DC电并将降低的AC电提供到电源插座 (powerpoint)54的降压转换器。在至少一个实施例中,电力转换器52可包 括用于降低电压的AC变压器和用于从AC转换到DC并将降低的DC电提供 到电源插座54的整流器。
电源插座54可包括电流传感器和/或电压传感器。所述传感器可被配置 为测量提供到连接到电源插座54的车辆10外部的装置50的电流和/或电压。
电源插座54可包括连接器56。连接器56可以是接地的插座或不接地的 插座。所述插座可类似于NEMA5型插座或NEMA1型插座。在至少一个实 施例中,连接器56可类似于NEMA14型插座或JISC8303插座。在至少一 个实施例中,连接器56可以是接地的插头或不接地的插头。
在控制器40使车辆10或动力传动系统12以发电模式运转之前可先满足 特定的实施基础。这些实施基础可包括传动装置16处于没有扭矩可被传递到 车轮并且车辆点火装置处于“开启”位置的状态。
当传动装置16处于“驻车挡”或“空挡”时没有扭矩可被传递到车轮。 “驻车挡”可以是通过驻车棘爪等的接合以限制输出轴30的旋转来抑制传动 装置16向车轮提供输出扭矩的传动装置状态。“空挡”可以是不限制输出轴 30的旋转但通过应用驻车制动或紧急制动来限制车轮旋转的传动装置状态。
响应于控制器40检测或确定传动装置处于驻车制动启动的“驻车挡”或 “空挡”并且点火装置处于“开启”位置,车辆10的操作员可被允许通过用 户界面60选择发电模式。在至少一个实施例中,开关可设置在电源插座54 附近以在满足实施基础的情况下使车辆10的操作员能够启用电源插座54。 响应于发电模式的启动,牵引电池22可将电力提供至车辆外部的装置50。
虽然控制器40示出为一个控制器,但控制器40可以是较大的控制系统 的一部分并且可以由整个车辆10中的各种其它控制器(诸如车辆系统控制器 (VSC))来控制。因此,应理解控制器40和一个或更多个其它控制器可统 称为“控制器”,所述“控制器”响应于来自多个传感器的信号而控制多个 致动器以控制多种功能,诸如启动/停止发动机14、运转电机20以提供车轮 扭矩或为牵引电池22充电、监控牵引电池22的荷电状态(SOC,stateof charge)、选择或计划变速器换挡、向电源插座54提供电力等。
控制器40可包括与各种类型的计算机可读存储装置或介质通信的微处 理器或中央处理器(CPU)。例如,计算机可读存储装置或介质可包括只读 存储器(ROM)、随机存取存储器(RAM)和保活存储器(KAM)中的易 失性存储和非易失性存储。KAM是一种可以用于在CPU断电时存储各种操 作变量的永久或非易失性存储器。计算机可读存储装置或介质可以使用任意 数量的已知存储装置(诸如PROM(可编程只读存储器)、EPROM(电可编 程只读存储器)、EEPROM(电可擦除可编程只读存储器)、闪存或能够存 储数据的任意其它电、磁性、光学或组合的存储装置)来实现,这些数据中 的一些数据代表由控制器40使用以控制动力传动系统12或车辆10的可执行 指令。
控制器40可与设置在牵引电池22内或设置为靠近牵引电池22的传感器 通信以监控牵引电池22的荷电状态。当牵引电池22正在为车辆外部的装置 50供电同时发动机14关闭时,牵引电池22的荷电状态会降低。荷电状态的 这种降低可能需要使发动机14和电机20运转以为牵引电池22充电。
响应于牵引电池22的荷电状态接近或小于牵引电池荷电状态下阈值,同 时牵引电池22正在为装置50供电,控制器40可输出发动机启动请求。发动 机启动请求可包括分离离合器18将发动机14与电机20结合的命令。发动机 启动请求还可包括将预定量的牵引电池功率提供至电机20的命令。所述预定 量的牵引电池功率可以是基于牵引电池22的功率容量的。所述牵引电池22 的功率容量可基于环境温度或牵引电池温度而改变。
功率可被提供至电机20以使电机20和发动机14旋转上升到期望转速。 当发动机14达到期望的发动机起动转速时,发动机14就可以被点燃并启动。 发动机14可开始产生扭矩,所述扭矩可使电机20旋转并产生电力以为牵引 电池22充电。
控制器40可被配置为使发动机14和电机20根据非主动的充电曲线 (non-aggressivechargingprofile)或主动的充电曲线(aggressivecharging profile)运转以按照一定速率向牵引电池22提供电力。当使动力传动系统12 根据非主动的充电曲线运转的同时,控制器40可使发动机14和电机20运转 以基于由车辆10外部的装置50请求的电力负载向牵引电池22提供电力。
默认情况下发动机14可以以怠速转速运转。电机20因结合至发动机14 可将第一功率水平提供到牵引电池22。响应于由装置50请求的电力负载的 增加,发动机转速和/或发动机扭矩可增加,使得电机20将大于第一功率水 平的第二功率水平提供到牵引电池22。响应于由装置50请求的电力负载的 减小,发动机转速可减小,使得电机20提供小于第二功率水平的第三功率水 平。在控制器40正在使动力传动系统12根据非主动的充电曲线运转的同时, 发动机转速和发动机功率水平以及最终的电机功率输出可以是基于由装置50 请求的电力负载的。
非主动的充电曲线可负面地影响发动机14的发动机转速和燃料经济性。 发动机14在怠速转速时通常具有低效率。在发动机转速改变时发动机14会 保持在低效率的运转点,这会降低整个系统的效率。为了改善燃料经济性和 整个系统效率,控制器40可被配置为:响应于牵引电池22的荷电状态接近 或小于下阈值,使发动机14和电机20基于主动的充电曲线运转以按照一定 速率为牵引电池22充电。
主动的充电曲线可使发动机14以预定的功率水平运转。对于预定的功率 水平,发动机14和电机20可以在最佳运转点运行以最大化系统效率。在牵 引电池22正在向装置50提供电力的同时,所述预定的功率水平可保持相当 恒定,而不考虑由装置50请求的电力负载。
预定的功率水平可以是使发动机燃料消耗最小化同时使由电机20传递 到牵引电池22的功率最大化的发动机功率水平。所述预定的功率水平可以是 可足以满足可提供到装置50的最大可用功率输出并足以按照预定速率为牵 引电池22充电的功率水平。
控制器40可基于燃料消耗图和/或电机效率图来计算发动机14的预定的 功率水平和电机20的运转点。燃料消耗图可以是可使控制器40选择用于获 得最低的发动机燃料消耗的发动机转速和发动机扭矩以及可满足最大的可用 功率输出并以所述速率为牵引电池22充电的对应的发动机功率水平的多维 图。
电机效率图可以是可使控制器40选择期望的电机扭矩的多维图。控制器 40可将电机转速与电机输出扭矩关联。电机输出扭矩和电机输出功率可保持 稳定或在预定电机转速(称为马达扭矩拐点)以上开始减小。控制器40可抑 制发动机转速和发动机扭矩供应至电机20,使得不会到达马达扭矩拐点,以 确保高效的电机运转。
控制器40可基于发动机转速、电机转速、环境温度、牵引电池状况或电 机状况来调节预定的功率水平和/或为牵引电池22充电的速率。控制器40可 响应于发动机转速会使电机以高于马达扭矩拐点的转速旋转,而通过降低发 动机转速和发动机扭矩中的至少一个来降低预定的功率水平。
控制器40可基于环境温度来调节预定的功率水平和/或为牵引电池22充 电的速率。温度传感器可设置在车厢内或设置为靠近车辆的外部并被配置为 测量或监控环境温度。当环境温度增加时,控制器40可降低预定的功率水平 并减小所述速率。
当环境温度增加时,电机温度可增加并接近电机热约束或热限制。温度 传感器可设置为靠近电机20并被配置为测量或监控电机绕组温度、电机油温 或其它电机组件温度。
电机温度的增加可降低电机20的额定功率。电机20的额定功率可归因 于使绕组绝缘恶化、使永久磁体的磁化状态恶化、接近轴承温度限制或接近 电机20的冷却能力限制的升高的温度。响应于电机温度接近电机温度上阈 值,控制器40可降低发动机转速、发动机扭矩、电机转速和电机扭矩中的至 少一个以避免接近电机热约束或热限制。
当环境温度增加时,牵引电池温度可增加。温度传感器可设置为靠近牵 引电池22并被配置为监控或测量至少一个牵引电池单元的温度。当牵引电池 温度增加时,电池性能会恶化并降低牵引电池22从电机20接收电荷或电力 的能力。响应于牵引电池温度接近牵引电池温度上阈值,控制器40可降低发 动机转速、发动机扭矩、电机转速和电机扭矩中的至少一个。
控制器40可基于牵引电池状况减小预定的功率水平和/或所述速率。牵 引电池状况可包括牵引电池22的牵引电池温度或荷电状态。响应于牵引电池 22的荷电状态接近荷电状态上阈值,同时牵引电池22正在向装置50提供电 力,控制器40可降低向牵引电池22提供电力的速率。
响应于牵引电池22的荷电状态接近荷电状态下阈值,同时牵引电池22 正在向装置50提供电力并且牵引电池22正在从电机20接收电力,控制器 40可增大向牵引电池22提供电力的速率。控制器40可增大发动机转速、发 动机扭矩、电机转速和电机扭矩中的至少一个以增大所述速率。
还可以按照牵引电池22在预定的时间间隔内能够接收的功率的量来限 制牵引电池22。如果所述速率接近或大于牵引电池22在预定的时间间隔内 能够接收的功率的量,则控制器40可减小预定的功率水平和/或所述速率。 控制器40可降低发动机转速、发动机扭矩、电机转速和电机扭矩中的至少一 个。
控制器40可基于电机状况减小预定的功率水平和/或所述速率。电机状 况可包括电机组件温度、电机磁状态和电机最大功率输出。当电机温度接近 或超过电机温度上阈值时,电机磁状态会减小。当电机功率输出接近或超过 电机功率输出阈值时,控制器40可减小预定的功率水平和/或所述速率。控 制器40可通过减小发动机转速、发动机扭矩、电机转速和电机扭矩中的至少 一个来减小所述速率。
控制器40可持续使发动机14和电机20运转以向牵引电池22提供电力 至少直到牵引电池荷电状态接近或达到上阈值。响应于牵引电池荷电状态大 于上阈值,控制器40可命令发动机停止。在牵引电池22持续向装置50提供 电力的同时,控制器40还可停止运转用于向牵引电池22提供电力的发动机 14和电机20。
图2A至图2C分别描述了发动机功率、由车辆外部的装置请求的电力负 载以及牵引电池荷电状态的对应的时间图。这些图可以在时间上对应并说明 发电模式优化的示例性实施例。
图2A是发动机功率(尤其是预定的发动机功率水平100)与时间的图。 在时间t0和t1附近,发动机14可以是关闭的并且不产生功率。
图2B是由车辆10外部的装置50请求的电力负载102的图。在时间t0 处,车辆10外部的装置50不请求来自牵引电池22的电力。在时间t1附近, 装置50可请求电力负载,所述电力负载在时间t1附近增加到第一水平并保 持稳定直到时间t2附近。
图2C是牵引电池荷电状态104的图。在时间t0处,牵引电池荷电状态 104可接近荷电状态上阈值106。当在时间t1附近,车辆10外部的装置50 请求来自牵引电池22的电力负载时,牵引电池荷电状态104会开始减小。在 时间t2附近,牵引电池荷电状态104可接近荷电状态下阈值108。
参照图2A-图2C,响应于牵引电池荷电状态104在时间t2附近接近荷电 状态下阈值108,控制器40可命令发动机启动。在时间t2附近,发动机14 可开始以预定的功率水平产生功率。在时间t2和时间t3附近,所述预定的功 率水平可保持恒定,而不考虑电力负载102的变化为小于第一功率水平的第 二功率水平。
在时间t2附近,可使发动机14和电机20运转为以一定速率向牵引电池 22提供电力从而为牵引电池22充电。响应于牵引电池荷电状态104在时间 t3附近接近荷电状态上阈值106,控制器40可命令发动机停止。在时间t3附 近,尽管由装置50请求的电力负载102变化,也可命令发动停止。
当在时间t3附近,电力负载102增加到大于第一功率水平的第三功率水 平时,发动机14可保持关闭。响应于牵引电池荷电状态104在时间t4附近 接近荷电状态下阈值,控制器40可命令发动机启动。在时间t4附近,发动 机14可开始以预定的功率水平产生功率。在时间t5附近,预定的功率水平 可保持恒定,而不考虑电力负载102的减小为小于第一功率水平的第四功率 水平。
在时间t4附近,发动机14和电机20可运转为以一定速率向牵引电池提 供功率从而为牵引电池22充电。响应于牵引电池荷电状态104在时间t5附 近接近荷电状态上阈值106,控制器40可命令发动机14停止。在时间t4附 近,可命令发动机停止,而不考虑由装置50请求的电力负载102。
参照图3,示出了控制车辆10的示例性方法的流程图。所述方法可以由 控制器40来执行并可实施为闭环控制系统。为简便起见,下面将在单个迭代 的背景下描述所述方法。
控制逻辑可监控点火装置状态、传动装置状态和发电模式状态。在框200 处,所述方法可确定车辆10或动力传动装置16是否处于应用驻车制动的“驻 车挡”或“空挡”状态。如果车辆10或传动装置16不是处于应用驻车制动 的“驻车挡”或“空挡”状态,则所述方法可结束。如果车辆10或传动装置 16处于应用驻车制动的“驻车挡”或“空挡”状态,则所述方法可继续到框 202。
在框202,所述方法可确定车辆10的操作员是否已经启动发电模式。如 果车辆10的操作员没有启动发电模式,则所述方法可结束。如果车辆10的 操作员启动发电模式,则所述方法可继续到框204。
在框204处,所述方法可确定或计算牵引电池22荷电状态。在框206 处,如果牵引电池荷电状态大于牵引电池荷电状态下阈值,则所述方法可命 令牵引电池22向车辆10外部的装置50提供电力同时发动机14关闭,并且 所述方法可结束。如果牵引电池22荷电状态小于或接近牵引电池荷电状态下 阈值,则所述方法可继续到框208。
在框208处,所述方法可命令发动机启动。所述方法可基于发动机转速、 发动机扭矩、电机转速、估计的发动机燃料消耗、电机扭矩、环境温度、电 机温度、牵引电池温度或电池功率限制中的至少两个的结合来计算预定的发 动机功率水平。在框210处,发动机14可以以预定的发动机功率水平运转, 而不考虑由车辆10外部的装置50请求的电力负载。
在框212处,发动机14和电机20可运转为向牵引电池22提供电力以按 照一定速率为牵引电池22充电。为牵引电池22充电的速率可以是基于当前 的牵引电池荷电状态、电机转速、电机温度、牵引电池温度、发动机转速、 发动机扭矩或燃料消耗率中的至少一个的。响应于电机温度和牵引电池温度 中的至少一个接近上阈值,可降低所述速率。
在框214处,如果牵引电池荷电状态小于牵引电池荷电状态上阈值,则 在框212处,所述方法可继续使发动机14和电机20运转以以所述一定速率 为牵引电池22充电。如果牵引电池荷电状态大于或接近牵引电池荷电状态上 阈值,则所述方法可继续到框216,在框216中控制器40可命令发动机停止。
虽然上面描述了示例性实施例,但是并不意味着这些实施例描述了本发 明的所有可能的形式。另外,说明书中使用的词语为描述性词语而非限制, 并且应理解的是,在不脱离本发明的精神和范围的情况下,可作出各种改变。 此外,可组合各个实现的实施例的特征以形成本发明的进一步的实施例。