专利名称: | 用于控制具有电加热器的车辆的系统和方法 | ||
专利名称(英文): | System and method for controlling a vehicle having an electric heater | ||
专利号: | CN201310487798.2 | 申请时间: | 20131017 |
公开号: | CN103775221A | 公开时间: | 20140507 |
申请人: | 福特全球技术公司 | ||
申请地址: | 美国密歇根州迪尔伯恩市 | ||
发明人: | 安吉娜·弗南德·珀拉斯; 威廉·大卫·特莱汉 | ||
分类号: | F02D29/02; B60H1/03 | 主分类号: | F02D29/02 |
代理机构: | 北京铭硕知识产权代理有限公司 11286 | 代理人: | 郭鸿禧; 王秀君 |
摘要: | 本发明提供一种用于控制具有电加热器的车辆的系统和方法。用于操作电加热器以确定加热器功能的系统和方法基于在可精确估计其它系统部件的电功耗的操作状况期间相对于期望加热器功耗的实际加热器功耗。包括第二加热源的一个或多个部件可基于加热器功能而被控制。该系统可包括混合动力车辆,混合动力车辆具有:发动机;电加热器;加热器芯;阀,布置为引导冷却液经过发动机和/或电加热器;控制器,被配置为当电加热器被命令启动时并且当电加热器的实际能耗低于对应阈值时存储诊断代码和/或启动发动机。 | ||
摘要(英文): | The invention provides a system and method for controlling a vehicle having an electric heater. A system and method for operating an electric heater to determine heater functionality is based on actual heater power consumption relative to expected heater power consumption during operating conditions where electrical power consumption by other system components can be accurately estimated. One or more components, including a second heating source, may be controlled based on the heater functionality. The system may include a hybrid vehicle having an engine, an electric heater and a heater core, a valve positioned to route coolant through the engine and/or the electric heater, and a controller configured to store a diagnostic code and/or start the engine when the electric heater is commanded on and when the actual energy consumption of the electric heater is below a corresponding threshold. |
1.一种用于控制具有发动机和电加热器的混合动力车辆的方法,所述方 法包括: 命令电加热器启动;以及 当基于针对于由至少一个车辆部件消耗的功率调节的测量的车辆功耗的 实际电加热器功耗低于对应阈值时,启动发动机。
2.如权利要求1所述的方法,其中,在预定时间间隔上对所述实际电加 热器功耗求平均值。
3.如权利要求1所述的方法,其中,所述实际电加热器功耗基于功耗的 瞬时测量值。
4.如权利要求1所述的方法,其中,在预定时间间隔上对所述实际电加 热器功耗求积分。
5.如权利要求1所述的方法,所述方法还包括: 当所述实际电加热器功耗低于所述对应阈值从而指示电加热器不可操作 时,存储诊断代码。
6.如权利要求1所述的方法,所述方法还包括: 当所述实际电加热器功耗低于所述对应阈值时,控制阀选择性地将冷却 液从发动机引导至加热器芯以加热车辆。
1.一种用于控制具有发动机和电加热器的混合动力车辆的方法,所述方 法包括: 命令电加热器启动;以及 当基于针对于由至少一个车辆部件消耗的功率调节的测量的车辆功耗的 实际电加热器功耗低于对应阈值时,启动发动机。
2.如权利要求1所述的方法,其中,在预定时间间隔上对所述实际电加 热器功耗求平均值。
3.如权利要求1所述的方法,其中,所述实际电加热器功耗基于功耗的 瞬时测量值。
4.如权利要求1所述的方法,其中,在预定时间间隔上对所述实际电加 热器功耗求积分。
5.如权利要求1所述的方法,所述方法还包括: 当所述实际电加热器功耗低于所述对应阈值从而指示电加热器不可操作 时,存储诊断代码。
6.如权利要求1所述的方法,所述方法还包括: 当所述实际电加热器功耗低于所述对应阈值时,控制阀选择性地将冷却 液从发动机引导至加热器芯以加热车辆。
翻译:技术领域
本公开涉及一种用于具有电加热器的车辆的加热控制策略。
背景技术
电加热系统可用于补充由发动机提供的热并且加热车辆的乘客舱。尽管 在仅由牵引电池驱动的电动车辆和具有内燃发动机和牵引电池的组合的混合 动力电动车辆中经常使用这种加热系统,但是也可在其它应用中发现这种加 热系统。例如,电加热系统可用于空调、除湿器、干燥器、便携式加热器和 其它电气用具。
为了在车辆应用中为乘客提供舒适性,车辆具有加热或冷却乘客舱的能 力。传统车辆使用来自发动机的余热作为乘客舱的唯一加热源。随着电池电 动车辆(BEV)的出现,可用于加热车辆乘客舱的余热很少或者没有可用于加热 车辆乘客舱的余热。如此,BEV可使用电加热器加热乘客舱。类似地,虽然 混合动力电动车辆(HEV)包括可以为加热车辆乘客舱提供一些余热的小型内 燃发动机,但是这些车辆被设计为使发动机的使用最小化以使燃料经济性最 大化。如此,这些车辆遭遇不同的加热挑战,因为发动机无法总是在运行并 产生由加热系统使用的余热。插电式混合动力电动车辆(PHEV)通过在很长时 间段期间在关闭发动机的情况下运行而加剧了这个问题。为了提供最佳燃料 经济利益,期望加热乘客舱又不必仅依赖于发动机余热。
如此,已提出用于加热电动车辆和混合动力电动车辆的乘客舱的各种替 代方案。这样的一个解决方案使用电加热器作为热源,以为电动车辆提供热, 或者在混合动力车辆中当发动机余热不足以满足车辆乘客舱的加热需求时补 充来自发动机的热。电加热器通常包含用作将电转换成热的电阻器的一个或 多个加热元件。电加热器可包括用于调节热输出的恒温器。可选地,电加热 器可包括正温度系数(PTC)加热元件。PTC加热元件由具有随着温度增加而增 加的电阻的小瓷石制成以提供自限性温度特性,从而不需要恒温器。另外, PTC加热器具有快速加热响应时间和自动改变电阻和关联的电流/功率以保持 预定温度的能力。
各种商用成分的电加热器可包括一些集成诊断或自测试功能以确定加热 器操作状态。然而,这些诊断可能不足以用于一些应用或者不适合一些应用。 特别地,集成加热器诊断可能不提供足够的或及时的反馈,以确定针对于特 定应用加热器是否如所期望的那样工作。在车辆应用中,这些诊断可能在检 测或报告各种操作状况方面存在延迟,可能无法检测一些操作异常,和/或可 能无法在检测各种状况时具有所期望的精度或粒度。
发明内容
公开了一种系统和方法,所述系统和方法用于操作电加热器以基于在可 精确估计其它系统部件的电功耗的操作状况期间相对于期望加热器功耗的实 际加热器功耗来确定加热器功能。所述系统和方法还可包括:基于加热器功 能控制一个或多个部件以控制第二加热源。
在一个实施例中,一种混合动力车辆包括:发动机;电加热器;热交换 器或加热器芯;阀,布置为引导冷却液经过发动机和电加热器中的至少一个 而到达加热器芯;控制器,被配置为当电加热器被命令启动时并且当实际电 加热器功耗低于与期望电加热器功耗关联的对应阈值时存储诊断代码。在各 种实施例中,在其它电功率消耗部件关闭或在具有已知功耗的状态下操作的 车辆操作状况期间确定测量的和/或估计的电加热器功耗。实施例还可包括: 启动发动机以将热提供给车辆部件和/或车辆乘客舱。在一个实施例中,被构 造为测量离开电加热器的冷却液温度的传感器将对应信号提供给控制器,并 且控制器基于冷却液温度和命令的电加热器的占空比而估计期望电加热器功 耗。
根据本公开的实施例可包括一种用于控制具有发动机和电加热器的混合 动力车辆的方法,所述方法包括:接收加热请求;以及估计电加热器的实际 能耗。实际能耗可基于在预定时间间隔上积分的电加热器的实际功耗,其中, 实际能耗还基于针对于由至少一个车辆部件消耗的功率调节的测量的车辆功 耗。该方法还包括:将电加热器的实际能耗与对应阈值进行比较;以及当实 际能耗低于所述对应阈值时,存储诊断代码。所述对应阈值可基于从冷却液 温度和当前占空比估计的期望电加热器功耗,其中,可从测量离开电加热器 的冷却液温度的对应传感器获得冷却液温度。另外,测量的电加热器功耗基 于从牵引电池提供的功率,并且所述至少一个车辆部件可包括DC/DC转换器、 逆变器系统控制器和/或电压缩机中的至少一个。
在各种实施例中,一种用于控制具有发动机和电加热器的车辆的方法可 包括:命令电加热器启动;以及当基于针对于由至少一个车辆部件消耗的功 率调节的测量的车辆功耗的实际电加热器功耗低于对应阈值时,启动发动机。 可在预定时间间隔上对实际电加热器功耗求平均值,可在预定时间段上对实 际电加热器功耗求积分,或者实际电加热器功耗可基于功耗的瞬时测量值。 所述方法可还包括:当实际电加热器功耗低于所述对应阈值时,控制阀选择 性地将冷却液从发动机引导至加热器芯以加热车辆。
一种用于控制具有发动机和电加热器的混合动力车辆的方法,所述方法 包括:接收加热请求;估计电加热器的实际能耗,实际能耗基于在预定时间 段上的电加热器的实际功耗,其中,实际功耗基于针对于由至少一个车辆部 件消耗的功率调节的测量的车辆功耗;将电加热器的实际能耗与对应阈值进 行比较;以及当实际能耗低于所述对应阈值时,存储诊断代码。所述测量的 车辆功耗基于由牵引电池提供的功率。所述至少一个车辆部件包括DC/DC转 换器、空调压缩机和逆变器系统控制器中的至少一个。在电加热器被命令启 动时实现最小功率之后,估计实际能耗。所述对应阈值基于针对于预定百分 比的偏差调节的在所述预定时间段上求积分的期望电加热器功耗。从冷却液 温度和当前加热器占空比估计所述期望电加热器功耗。在满足进入条件之后, 将电加热器的实际能耗与对应阈值进行比较,进入条件包括下面的条件中的 至少一个:被构造为测量离开电加热器的冷却液的温度的传感器操作,被构 造为迫使冷却液流经纯电加热环路的泵操作,被构造为选择性地引导冷却液 经过发动机和电加热器中的至少一个的阀操作,车速为零,以及发动机关闭。
一种混合动力车辆包括:发动机;电加热器;加热器芯;阀,布置为引 导冷却液经过发动机和电加热器中的至少一个而到达加热器芯;控制器,被 配置为当电加热器被命令启动,并且基于针对于由至少一个车辆部件消耗的 功率调节的测量的车辆功耗的实际电加热器功耗低于对应阈值时,存储诊断 代码。在预定时间间隔上对所述实际电加热器功耗求平均值。所述实际电加 热器功耗基于功耗的瞬时测量值。在预定时间间隔上对所述实际电加热器功 耗求积分。所述混合动力车辆还包括:传感器,被构造为测量离开电加热器 的冷却液的温度,其中,控制器使用所述温度和当前占空比的组合而估计电 加热器的期望功耗,并且其中,所述对应阈值基于针对于容许偏差调节的期 望功耗。所述测量的车辆功耗基于由牵引电池提供的功率。所述至少一个车 辆部件包括DC/DC转换器、空调压缩机和逆变器系统控制器中的至少一个。
根据本公开的实施例提供各种优点。例如,根据各种实施例的对于电加 热器和/或具有电加热器的车辆的控制在其它电消耗者的操作状态已知的操 作状况下执行机会性诊断测试,以基于相对于期望加热器功耗的估计加热器 功耗来提供电加热器功能的更精确的和及时的反馈。本公开的实施例提供另 外的诊断粒度,以更具体地识别与加热器功能和相关电系统部件关联的各种 操作状况从而方便维修操作。
通过下面结合附图对优选实施例进行的详细描述,以上优点和其它优点 和特征将会容易地变得清楚。
附图说明
图1是示出根据本公开的用于混合动力车辆的加热控制策略的操作的代 表性实施例的示意图;
图2是根据本公开的实施例的车辆的发动机冷却液回路的示意性表示;
图3是示出根据本公开的实施例的用于操作电加热器的系统和/或方法 的操作的流程图。
具体实施方式
根据需要,在此公开本发明的详细实施例;然而,应该理解,公开的实 施例仅仅是本发明的示例,本发明可按照各种和替代的形式实施。附图未必 按照比例绘制;一些特征可被夸大或最小化以示出特定部件的细节。因此, 在此公开的特定构造和功能性细节不应被解释为是限制性的,而仅仅解释为 用于教导本领域技术人员以各种方式使用本发明的代表性基础。
根据本公开的加热控制策略的各种实施例可被实现于车辆,所述车辆可 包括具有含单一推进装置(诸如,例如内燃发动机或由牵引电池供电的电机 (电动机/发电机或牵引电机))的动力传动系的车辆。车辆还可具有两个或更 多的推进装置。例如,车辆可具有发动机和电动机、燃料电池和电动机、或 者如本领域已知的推进装置的其它组合。发动机可以是压燃式或火花点火式 内燃发动机或者外燃发动机,并且可想到使用各种燃料。在一个示例中,车 辆是具有内燃发动机和由电池供电的牵引电动机的混合动力电动车辆(HEV), 并且另外诸如在插电式混合动力电动车辆(PHEV)中车辆可具有连接到外部电 网的能力。PHEV构造用于附图并且用于描述以下的各种实施例;然而,可想 到各种实施例可用于具有如本领域已知的其它推进装置或推进装置的组合的 车辆。
插电式混合动力电动车辆(PHEV)涉及已有的混合动力电动车辆(HEV)技 术的扩展,其中由牵引电池和至少一个电机对内燃发动机进行补充以进一步 获得增加的里程和减少的车辆排放。与标准的混合动力车辆相比,PHEV使用 容量更大的电池,并且增加从电网对电池进行再充电的能力,电网将能量供 应到充电站处的电出口。这进一步提高在电驱动模式下以及在碳氢化合物/ 电的混合驱动模式下的总体车辆系统操作效率。
图1示出了HEV110的动力传动系构造和控制系统。动力分流式HEV110 可以是并联式HEV。如图中所示的HEV构造仅用于示例性目的而非意图成为 限制,这是因为本公开适用于任何合适架构的BEV、HEV和PHEV。在这种动 力传动系构造中,存在连接到驱动系的两个动力源,驱动系包括使用行星齿 轮组122彼此连接的发动机和发电机子系统的组合以及电驱动系统(电动机、 发电机和电池子系统)。电池子系统是用于发电机和电动机的能量储存系统。 改变发电机速度将会改变发动机输出动力在电路径和机械路径之间的分配。 在具有动力分流式动力传动系的车辆110中,与传统车辆不同,发动机116 需要通过发动机速度控制获得的发电机扭矩或发电机制动扭矩,以通过电路 径和机械路径(分流模式)或完全通过机械路径(并行模式)将它的输出动力传 递到传动系以用于向前运动,如本领域通常所知的。
在使用第二动力源的操作期间,电动机120从电池126获取能量并独立 于发动机116提供推进以用于向前运动和向后运动。这种操作模式被称为“电 驱动”或纯电动模式或EV模式。与传统动力传动系不同,这种动力分流式动 力传动系的操作结合两个动力源以一起无缝地工作,从而满足驾驶员的需求 又不超过系统的限制(诸如,电池限制),同时优化总体动力传动系效率和性 能。
如图1中所示,车辆系统控制器(VSC)128除了实施车辆加热策略之外, 还协调对动力传动系的控制,如参照图2更详细地示出和描述的。在普通动 力传动系状况下,VSC128解释驾驶员的需求(例如,PRND和加速或减速需求), 然后基于驾驶员需求和动力传动系限制来确定车轮扭矩命令。另外,VSC128 确定每个动力源何时需要提供扭矩以及每个动力源需要提供多大扭矩以便满 足驾驶员的扭矩需求并且实现发动机的操作点(扭矩和速度)。在PHEV车辆 110构造中,电池126可另外使用插座132而再充电(以虚线示出),插座132 连接到电网或其它外部电源并且能通过电池充电器/转换器130结合到电池 126。
车辆110可在电动车辆模式(EV模式)下操作,在EV模式下,电池126 将全部能量提供给电动机120以操作车辆110。除了节省燃料的益处之外, 在EV模式下操作可通过更低的噪声和更好的驾驶性能(例如,更平稳的电操 作、更低的噪声、振动和声振粗糙度(NVH)以及更快的响应)来增强乘坐舒适 感。在EV模式下操作还通过在这种模式期间来自车辆的零排放而有益于环 境。然而,例如,在EV模式下操作在启动和运行发动机116时提供很少的可 用于加热乘客舱或加热各种其它车辆部件的余热或者不提供余热,以提供所 期望的车辆性能或排放控制。车辆110可包括由控制器128协调的具有各种 气候控制功能的气候控制系统。可选地,可提供单独的气候控制计算机并且 该气候控制计算机可使用标准协议(诸如,例如控制器局域网络(CAN)协议) 经有线或无线网络与VSC128通信。VSC可包括各种输入(例如,加速踏板位 置传感器(APPS)、发动机冷却液温度传感器(ECTS)和加热器芯温度传感器 (HCTS1,HCTS2))和连接到传感器和致动器的输出,以响应于操作员输入和/ 或车辆和周围操作状况而控制车辆乘客舱和/或车辆部件的加热和冷却。例 如,VSC128可包括连接到电水泵(EWP)140、辅助水泵(AWP)142、加热器芯 隔离阀(HCIV)144和发动机冷却液阀(ECV)146的输出。使用语音激活、触摸 屏和/或旋钮、滑块和按钮实现的人机接口(HMI)可用于设置由VSC128和/ 或气候控制系统计算机使用以实现车辆加热策略的所期望的乘客舱温度或操 作模式,如在此更详细地描述的。
采用各种方案以满足车辆加热需求,如前所述,车辆加热需求可基于操 作员输入和/或周围操作状况。参照图2,示出了用于加热混合动力车辆的乘 客舱的车辆加热策略的一个实施例。图2中示出的用于车辆加热的系统或方 法提供两个冷却液加热源。该系统可使用来自发动机116的热加热冷却液, 如使用内燃发动机的传统车辆一样。该系统还可使用在本实施例中由正温度 系数(PTC)加热器实现的电加热器224加热冷却液。具有多个热源允许在普通 操作状况期间的灵活性和在来自一个热源的热不足或不可用的操作状况期间 的一些冗余性。来自不同热源的冷却液流经加热器芯230。该系统可使用选 择性地引导来自不同热源的冷却液的HCIV144。如前所述,VSC模块128(图 1中示出)可控制该系统的操作,或者可与气候控制计算机或控制模块协调对 该系统的控制。VSC模块128可基于加热请求和加热系统中的各部件的状态 (特别地,电加热器224的状态)确定加热模式。
仍然参照图2,该系统还可使用AWP142和EWP140推动冷却液流经该 系统。多个温度传感器可用于测量进入和离开加热器芯230的冷却液的温度。 例如,第一加热器芯温度传感器(HCTS1)226可被包括以测量离开电加热器 224并进入加热器芯230的冷却液的温度,并且第二加热器芯温度传感器 (HCTS2)228可被包括以测量离开加热器芯230的冷却液的温度。该系统还可 具有:散热器222,用于耗散冷却液中的热;恒温器218,用于控制散热器 222和发动机116之间的冷却液的流动。
如图2中所示,多个冷却液路径可用于加热冷却液。所描述的冷却液路 径包括纯电加热环路210、组合加热环路212、发动机散热器环路216和发动 机旁路环路214。纯电加热环路210引导冷却液经过电加热器224、AWP142、 HCT传感器226、228和加热器芯230。在这个加热环路中,电加热器224仅 加热独立于流经发动机的任何冷却液的冷却液。更具体地讲,AWP142使冷 却液循环经过加热器芯230和电加热器224。
在组合加热环路212中,发动机116和电加热器224都可将热提供给冷 却液。EWP140可被构造为推动冷却液流经发动机116和电加热器224。当发 动机116正在运行时,来自发动机116的热被传递到冷却液。发动机冷却液 可流经HCIV144、电加热器224、AWP142和加热器芯230。另外,AWP142 还可被打开以帮助冷却液流经该系统。
另外,HCIV144可被构造为允许冷却液流经纯电加热环路210或组合加 热环路212。HCIV144可以是三通阀,该三通阀允许一个端口基于命令的车 辆操作模式选择性地连接到另外两个端口中的每个端口。HCIV144还可以以 这种方式操作,即允许冷却液从发动机116流到电加热器224,这形成组合 加热环路212。类似地,ECV146可被构造为允许冷却液流经发动机旁路环路 214和/或发动机散热器环路216。
发动机散热器环路216冷却发动机。发动机散热器环路216可包括:EWP 140,能够推动冷却液流经发动机116和散热器222。发动机散热器环路还可 包括:恒温器218,能够基于冷却液温度调节冷却液流入到发动机116中。 具体地讲,当冷却液达到设置点阈值时,恒温器218允许冷却液流经发动机 散热器环路216。冷却的流体随后流回到发动机116中并且重复这个过程。
如果电加热器224不工作或以其它方式不能提供所期望的热,则控制器 可存储对应的诊断代码,并且响应于引导冷却液经过组合加热环路212而控 制HCIV144。来自发动机116的余热可用于将冷却液加热到所期望的目标温 度。可选地,或者作为组合,可响应于将冷却液加热到目标温度而启动发动 机116。例如,通过在电加热器224是唯一使用的电部件的操作状况下(诸如 在车速为零同时发动机116关闭时)测量和/或估计由电池126(图1中示出) 提供的电力,该系统可确定电加热器224未如所期望的那样工作。在使获取 电池能量的其它负载最小化之后,如果电加热器正确地工作,则电池组电力 使用应该紧密地与电加热器电力使用匹配。电加热器224的电力需求可被测 量或估计。当其它部件使用电力时也可使用该方法,只要可获得这些其它部 件的测量或估计的电力需求即可。
图3是示出根据本公开的用于控制电加热器和/或具有电加热器的车辆 的系统或方法的代表性实施例的操作的流程图。如本领域的普通技术人员将 会理解的,图3中表示的功能可根据特定应用和实现方式而由软件和/或硬件 执行。根据特定处理策略(诸如,事件驱动、中断驱动等),可按照除了图3 中示出的次序或顺序之外的次序或顺序执行各种功能。类似地,虽然未明确 地示出,但是在特定操作状况下或者在特定应用中,可重复执行、并行执行 和/或省略一个或多个步骤或功能。在一个实施例中,示出的功能主要由存储 在计算机可读存储装置中的软件、指令或代码实现并且由一个或多个基于微 处理器的计算机或控制器执行以控制车辆的操作。
如图3中更详细地示出的,每当命令加热器启动时,运行功能测试。功 能测试可包括第一阶段310和第二阶段326。在第一阶段310期间,该测试 评估电加热器是否已完成倾斜升温周期。倾斜升温周期表示加热器达到满功 率所需的时间段。在第二阶段326期间,该测试评估电加热器的可操作性。 特别地,在块312,确定电加热器是否已完成倾斜升温周期。如果电加热器 未完成倾斜升温周期,则将估计的或测量的期望功率与第一校准功率阈值进 行比较314。从占空比或命令的加热器功率、冷却液温度和冷却液流速测量 和/或估计期望功率。如果在314,期望功率不大于第一校准功率阈值,则清 除第一计数器316并且该测试返回到在块310处测试的第一阶段的开始。然 而,如果在块314,期望功率大于第一校准功率阈值,则第一计数器加1(318) 并且将第一计数器和与加热器达到满功率所需的时间段关联的第一校准计时 器值进行比较320。如果第一计数器不大于第一校准计时器值,则倾斜升温 周期未完成324,并且该测试返回到块310。如果第一计数器大于第一校准计 时器值,则倾斜升温周期完成322,并且该测试可前进至第二阶段326。
在测试的第二阶段326期间,确定期望功率是否大于第二校准功率阈值 328。如果期望功率小于第二校准功率阈值,则倾斜升温周期未完成并清除第 一计数器330,该功能测试重新开始并且返回到第一阶段310的开始。如果 在块328,期望功率大于第二校准功率阈值,则该测试评估进入条件是否仍 然存在332。进入条件332可包括下面的条件:车速为零,发动机未运行, 被构造为测量离开电加热器的冷却液温度的温度传感器操作,AWP操作,以 及HCIV操作。可选地,通过在逆变器上使用电流传感器可消除在零速度时操 作车辆的需要,该电流传感器可测量逆变器系统控制器的实际消耗。随后可 通过从车辆电池输出的总功率减去由逆变器和其它部件(诸如,DC/DC转换器 和AC压缩机)消耗的功率来计算电加热器的功耗。
如果进入条件不存在,则清除第二计数器并且清除所有以前存储的实际 功耗和期望功耗的值338,允许该测试返回到第二阶段326的开始。相比之 下,如果进入条件仍然存在,则在块334,第二计数器加1。在块336,在与 该功能测试的第二阶段运行的时间间隔关联的第二校准计时器值上,使实际 功耗值和期望功耗值累加。加热器的实际功耗可基于针对于由至少一个车辆 部件消耗的功率调节的测量的车辆功耗。为了确定消耗的实际功率,可在第 二校准计时器值上对功耗求积分(能耗)。具体地讲,这可包括:获得电池功 率(电压乘以电流),并且将电池功率减去实际DC/DC转换器功耗、空调功耗、 逆变器系统控制器和/或传输功耗,最终获得与加热器功耗对应的实际功率。
在块340,确定第二计数器是否大于第二校准计时器值。如果第二计数 器不大于第二校准计时器值,则该测试返回到第二阶段326的开始。如果在 块340,第二计数器大于第二校准计时器值,则在块342,将实际能耗(实际 功耗在第二校准计时器值上求积分得到)与阈值进行比较,该阈值是针对于预 定百分比的容许偏差调节的期望能耗(期望功耗在第二校准计时器值上求积 分得到)。如果实际能耗低于这个阈值,则在344存储诊断代码。然而,如果 实际能耗在容许偏差内,则加热器通过该功能测试。
可选地,可在第二校准计时器值上对实际功耗和期望功耗求平均值,然 后将其与基于针对于容许偏差调节的期望功率值的对应阈值进行比较。还可 估计或测量瞬时的实际功耗和期望功耗,并且将其与对应阈值进行比较以确 定电加热器功能。
另外,控制器可被配置为响应于存储一个或多个诊断代码344而执行其 它动作。其它动作可包括但不限于:存储诊断代码和/或启动发动机以将热提 供给车辆。其它动作还可包括:控制HCIV引导冷却液经过组合加热环路并且 激活车辆内的指示器。指示器可以是灯(例如,扳手灯)、声音或消息。指示 器的目的在于向驾驶员警告车辆的问题。每当存在加热请求时,控制器被配 置为在每个驱动周期执行该功能测试至少一次。
尽管以上描述了示例性实施例,但是这些实施例并非意图描述本发明的 所有可能的形式。相反地,在本说明书中使用的词语是描述的词语而非限制 的词语,并且应该理解,在不脱离本发明的精神和范围的情况下,可做出各 种修改。另外,各种实现的实施例的特征可被组合以形成本发明的另外的实 施例。尽管各种实施例可能已被描述为提供优点或在一个或多个所期望的特 性方面优于其它实施例,但是本领域技术人员意识到,可折衷一个或多个特 性以实现所期望的系统属性,这取决于特定应用和实现方式。这些属性包括 但不限于:成本、强度、耐用性、生命周期成本、可销售性、外观、包装、 尺寸、维修保养方便性、重量、可制造性、装配容易程度等。在此讨论的被 描述为在一个或多个特性方面不如其它实施例或现有技术实现方式的实施例 不在本公开的范围之外,并且可期望用于特定应用。