车辆(发明专利)

专利号:CN201510640583.9

申请人:福特全球技术公司

  • 公开号:CN105460006A
  • 申请日期:20150930
  • 公开日期:20160406
专利名称: 车辆
专利名称(英文): Vehicle
专利号: CN201510640583.9 申请时间: 20150930
公开号: CN105460006A 公开时间: 20160406
申请人: 福特全球技术公司
申请地址: 美国密歇根州迪尔伯恩市
发明人: 卡罗尔·路易丝·大久保; 乔纳森·安德鲁·布彻; 邝明朗
分类号: B60W20/10; B60W10/06; B60W10/08; B60K6/44 主分类号: B60W20/10
代理机构: 北京铭硕知识产权代理有限公司 11286 代理人: 王秀君; 马翠平
摘要: 公开了一种车辆,一种混合动力电动车辆包括:发动机,可以选择性地提供推进车辆的驱动扭矩;电机,也选择性地提供驱动扭矩。差速器向车轮传递扭矩并且在车轮之间传递扭矩。行星齿轮组结合到发动机并且具有将环形齿轮扭矩传递到差速器的环形齿轮。连续扭矩传递部件可操作地将环形齿轮和电机结合到差速器。至少一个控制器,被配置为基于环形齿轮扭矩阈值来改变发动机输出。这能够通过连续扭矩传递部件将期望的扭矩传递到差速器。
摘要(英文): A hybrid electric vehicle includes an engine that can selectively provide drive torque to propel the vehicle. An electric machine also selectively provides drive torque. A differential transfers the torque to and amongst wheels. A planetary gearset is coupled to the engine and has a ring-gear for transmitting ring-gear-torque to the differential. A continuous torque transfer member operatively couples the ring-gear and the electric machine to the differential. At least one controller is configured to alter engine output based on a ring-gear-torque-threshold. This enables a desired torque to transfer through the continuous torque transfer member to the differential.
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
一种车辆,包括:发动机;行星齿轮组,结合到发动机并且具有向差速器传递环形齿轮扭矩的环形齿轮;电机,被构造为选择性地向差速器输出扭矩;连续扭矩传递部件,能够操作地将环形齿轮和电机结合到差速器;控制器,被配置为基于环形齿轮扭矩阈值改变发动机输出,从而将期望的扭矩通过连续扭矩传递部件传递到差速器。

1.一种车辆,包括:发动机;行星齿轮组,结合到发动机并且具有向差速器传递环形齿轮扭矩的环形齿轮;电机,被构造为选择性地向差速器输出扭矩;连续扭矩传递部件,能够操作地将环形齿轮和电机结合到差速器;控制器,被配置为基于环形齿轮扭矩阈值改变发动机输出,从而将期望的扭矩通过连续扭矩传递部件传递到差速器。<br/>2.根据权利要求1所述的车辆,进一步包括结合到连续扭矩传递部件以向连续扭矩传递部件提供扭矩的主动部件,所述主动部件具有中心轴,所述中心轴的任一端能够操作地结合到环形齿轮和电机。<br/>3.根据权利要求1所述的车辆,其中,所述控制器被配置为基于接近最大量或最大量的电机输出扭矩,改变发动机输出。<br/>4.根据权利要求1所述的车辆,其中,所述控制器被配置为还基于请求的车轮扭矩超过最大的可用电机扭矩和最大的可用发动机扭矩之和,改变发动机输出。<br/>5.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为基于车轮扭矩低于车轮扭矩阈值,增大发动机输出。<br/>6.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为响应于车辆速度低于车辆速度阈值且车轮扭矩低于车轮扭矩阈值,将环形齿轮扭矩增大至高于环形齿轮扭矩阈值。<br/>

PDF文件加载中,请耐心等待!
一种车辆,包括:发动机;行星齿轮组,结合到发动机并且具有向差速器传递环形齿轮扭矩的环形齿轮;电机,被构造为选择性地向差速器输出扭矩;连续扭矩传递部件,能够操作地将环形齿轮和电机结合到差速器;控制器,被配置为基于环形齿轮扭矩阈值改变发动机输出,从而将期望的扭矩通过连续扭矩传递部件传递到差速器。
原文:

1.一种车辆,包括:发动机;行星齿轮组,结合到发动机并且具有向差速器传递环形齿轮扭矩的环形齿轮;电机,被构造为选择性地向差速器输出扭矩;连续扭矩传递部件,能够操作地将环形齿轮和电机结合到差速器;控制器,被配置为基于环形齿轮扭矩阈值改变发动机输出,从而将期望的扭矩通过连续扭矩传递部件传递到差速器。<br/>2.根据权利要求1所述的车辆,进一步包括结合到连续扭矩传递部件以向连续扭矩传递部件提供扭矩的主动部件,所述主动部件具有中心轴,所述中心轴的任一端能够操作地结合到环形齿轮和电机。<br/>3.根据权利要求1所述的车辆,其中,所述控制器被配置为基于接近最大量或最大量的电机输出扭矩,改变发动机输出。<br/>4.根据权利要求1所述的车辆,其中,所述控制器被配置为还基于请求的车轮扭矩超过最大的可用电机扭矩和最大的可用发动机扭矩之和,改变发动机输出。<br/>5.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为基于车轮扭矩低于车轮扭矩阈值,增大发动机输出。<br/>6.根据权利要求1所述的车辆,其中,所述控制器进一步被配置为响应于车辆速度低于车辆速度阈值且车轮扭矩低于车轮扭矩阈值,将环形齿轮扭矩增大至高于环形齿轮扭矩阈值。<br/>

翻译:

技术领域本公开涉及混合动力车辆中改变发动机扭机以管理传递通过结合到发动机的行星齿轮的环形齿轮的扭矩。

背景技术混合动力车辆通常由两个主要的动力源(例如,内燃发动机和电动马达(由电池提供电力)驱动。一种类型的混合动力车辆是动力分流式混合动力车辆。动力分流式混合动力允许发动机和电动马达分别地或者组合地向车轮供应动力。可以将行星齿轮组结合到发动机和发电机,使得即使电动马达在提供推进车辆的必要扭矩时,发动机也可以为电池充电。发电机还可通过供应通过行星齿轮组的扭矩来充当电动马达。行星齿轮中的一个行星齿轮(例如环形齿轮)也可以将发动机和发电机结合到输出(诸如将扭矩分配到车轮的差速器)。特别是在低车速下,可能出现虽然车轮扭矩需求相对较大但车轮功率的量可能非常小的情况。这种情况最极端的是,当车辆以全加速踏板从静止(这时,车轮转速为零(因而车轮功率也为零))起步时,但车轮扭矩需求处于最大。可能出现另一种类似的情况,当车辆在沙子或碎石上车速低或为零时,车辆操作人员急剧踩加速踏板。在这些和其他类似的情况中,在正常的电池荷电状态(SOC)下,产生的期望的发动机功率对应于克服传动装置和附件载荷中的损失所必需的功率。混合动力车辆结构应被设计为适当地适应这种行驶情况同时也预期地向车轮提供推进车辆的扭矩。在一种类型的动力分流式混合动力中,一系列的减速齿轮(reductiongear)将扭矩从行星齿轮组传递到在车轮之间分配扭矩的差速器。例如,在一个车辆中,发动机可连接到行星齿轮组的行星架,同时中心齿轮连接到发电机。发动机输出的扭矩引起中心齿轮旋转,这使得发电机转动从而为电池充电或者通过牵引马达提供驱动扭矩。此外,行星齿轮组的环形齿轮使一系列扭矩减速齿轮(torquereductiongear)转动,最终使牵引马达和动力传动系统的输出转动。存在一些控制策略用于在上述低速和高扭矩的情况期间,基于通过环形齿轮传递的扭矩量,向车轮传递最佳扭矩。然而,当这些控制策略决定发动机和/或电动马达产生多少扭矩时,这些控制策略算入了一系列的减速齿轮。在另一种类型的动力分流式混合动力车辆中,链条、带或者其它连续扭矩传递构件将扭矩从行星齿轮组传递到差速器。不设置减速器。

发明内容根据一个实施例,一种车辆包括发动机、行星齿轮组、差速器、电机、连续扭矩传递部件和至少一个控制器。行星齿轮组结合到发动机并且具有向差速器传递环形齿轮扭矩的环形齿轮。电机被构造为选择性地向差速器输出扭矩。连续扭矩传递部件(CTTM)可运转地将环形齿轮和电机结合到差速器。控制器被配置为基于环形齿轮扭矩阈值来改变发动机输出,使得期望的扭矩通过CTTM传递到差速器。至少一个控制器可被配置为增大发动机输出,以使环形齿轮扭矩保持高于环形齿轮扭矩阈值从而将期望的扭矩通过CTTM传递到差速器。主动部件(诸如齿轮或链轮)可结合到CTTM以向CTTM提供扭矩。主动部件可具有中心轴,中心轴的一端可操作地结合到环形齿轮,另一端可操作地结合到电机。根据另一个实施例,提供一种控制车辆的发动机输出的方法。所述车辆包括发动机,所述发动机通过行星齿轮组中的环形齿轮和连续扭矩传递部件(CTTM)可操作地结合到差速器。车辆还具有电机,所述电机通过CTTM可操作地结合到差速器。所述方法包括基于通过环形齿轮传递的扭矩量来增大发动机输出,使得扭矩保持高于环形齿轮扭矩阈值并且使该扭矩通过CTTM传递。根据本公开的一个实施例,其中,增大发动机输出包括增大最小发动机功率阈值。根据本公开的一个实施例,所述方法进一步包括:保持发动机输出高于最小发动机功率阈值,使得通过环形齿轮传递的扭矩保持为高于环形齿轮扭矩阈值至少直到所需的扭矩保持为高于所需的扭矩阈值。根据本公开的一个实施例,其中,增大发动机输出响应于请求的车轮扭矩超过最大的可用电机扭矩和最大的可用发动机扭矩之和而发起。根据本公开的一个实施例,其中,增大发动机输出响应于在环形齿轮扭矩低于环形齿轮扭矩阈值时车辆速度低于车轮速度阈值而发起。根据本公开,提供一种车辆,包括:发动机;行星齿轮组,结合到所述发动机并且具有向差速器传递环形齿轮扭矩的环形齿轮;电机,被构造为选择性地向差速器输出扭矩;连续扭矩传递部件(CTTM),可操作地将环形齿轮和电机结合到差速器;控制器,被配置为增大发动机输出,以使环形齿轮扭矩保持高于环形齿轮扭矩阈值,从而将扭矩通过CTTM传递到差速器根据本公开的一个实施例,其中,所述车辆进一步包括结合到连续扭矩传递部件以向扭矩传递部件提供扭矩的主动部件,所述主动部件具有中心轴,所述中心轴的任一端可操作地结合到环形齿轮和电机。根据本公开的一个实施例,其中,所述控制器进一步被配置为基于车辆速度低于车辆速度阈值,增大发动机输出。根据本公开的一个实施例,其中,所述控制器进一步被配置为使发动机输出保持高于发动机输出阈值,使得通过环形齿轮传递的扭矩保持高于环形齿轮扭矩阈值至少直到车辆速度保持低于车辆速度阈值。根据本公开的一个实施例,其中,所述控制器进一步被配置为基于车轮扭矩低于车轮扭矩阈值,增大发动机输出。根据本公开的一个实施例,其中,所述控制器进一步被配置为响应于车辆速度低于车辆速度阈值和车轮扭矩低于车轮扭矩阈值,将环形齿轮扭矩增大至高于环形齿轮扭矩阈值。附图说明图1是根据本公开的一个实施例的动力分流式混合动力电动车辆的示意图。图2A和图2B是被规划后的发动机转速和被规划后的发动机扭矩与期望的发动机功率的曲线图示出。图3是根据一个实施例的由控制发动机输出以传递充足的环形齿轮扭矩的至少一个控制器实施的控制策略的流程图。图4是根据一个实施例的由控制发动机输出以传递充足的环形齿轮扭矩的至少一个控制器实施的控制策略的另一个流程图。

具体实施方式在此描述本公开的实施例。然而,应理解的是,公开的实施例仅为示例,并且其它实施例可以采用各种和替代的形式。附图不一定按比例绘制;可夸大或最小化一些特征,以显示特定组件的细节。因此,在此所公开的具体结构和功能细节不应被解释为限制,而仅作为用于教导本领域技术人员多方面地使用实施例的代表性基础。如本领域普通技术人员将理解的,参照任一附图示出和描述的各种特征可与在一个或更多个其它附图中示出的特征相组合,以产生未明显示出或描述的实施例。示出的特征的组合为典型应用提供代表性实施例。然而,对于特定应用或实施,期望与本公开的教导一致的特征的各种组合和修改。参照图1,混合动力电动车辆(HEV)10包括动力分流式动力传动系统。以下所述的动力分流的组件可以是流向车轮的机械动力或电力的流动路径,或者是流向车轮的机械动力和电力这两者的动力流动路径。车辆系统控制器(VSC)和/或动力传动系统控制模块(PCM)12包括被配置为控制动力传动系统中的各个组件的处理器和控制器网中的一个或更多个控制器。这些控制器可被广义地称为一个或更多个“控制器”。在其它组件中,控制器12控制电动牵引电池14。电池14具有双向的电连接,因此电池14接收和储存电能(例如,在再生制动期间),还向电牵引马达16(或马达/发电机,M/G1)供应能量以进行推进。控制器12还控制内燃发动机(ICE)18的运转。牵引马达16和发动机18均能够驱动传动装置20,传动装置20最终将扭矩传递到车辆的车轮。应理解,引用“马达”16和“发电机”32是出于便利和区分的目的。然而,“马达”16或“发电机”32或者“马达”16和“发电机”32两者通常可以被称为“电机”或者马达/发电机(M/G)。马达16和发电机32均能够通过向动力传动系统提供扭矩来充当马达,且能够通过将机械能转换成电能来充当发电机。发动机18将动力传递到连接至行星齿轮组24的扭矩输入轴22。可沿着输入轴22设置选择性地将发动机18连接到行星齿轮组24的单向离合器(未示出)。输入轴22向行星齿轮组24提供动力,所述行星齿轮组24包括环形齿轮26、中心齿轮28和行星架组件30。更具体地,输入轴22可驱动地连接到行星架组件30,以向行星齿轮组24的剩余部分提供动力。发电机32(M/G2)可驱动地连接到行星齿轮组24的中心齿轮28。发电机32可与中心齿轮28接合,使得发电机32可以随中心齿轮28旋转,也可以不随中心齿轮28旋转。当单向离合器将发动机18结合到行星齿轮组24时,发电机32可作为反作用(reactionary)元件产生对行星齿轮组24的运转起反作用的能量。发电机32产生的电能通过电连接36传递到电池14,电能储存在电池14中供以后使用(例如,推进车辆或驱动辅助元件)。电池14还可以以公知的方式通过再生制动接收和储存电能。电池14、马达16和发电机32均通过电连接36以双向电流动路径互相连接,使得每个组件均被电连接以用于推进和再生。在一种推进模式中,电池14向马达16供应储存的电能,使得马达16使动力传动系统的下游组件(下面描述)转动。发动机18还可通过向发电机32供应一部分动力来推进车辆,所述发电机32能够将电能传递到电池或者直接地传递到马达16。在另一种推进模式中,发动机18向行星齿轮组24提供动力,使环形齿轮26将扭矩传递到动力传动系统的下游组件(下面描述)。在这种模式期间,发电机32可以与行星齿轮组24分离,使得发电机32不产生电力(例如,当电池具有高的荷电状态时)。如果不对发电机32设置选择性分离,则当电池14荷电状态高时,发电机32会提供反作用的或者负的扭矩。连续扭矩传递部件40传递从发动机18或者马达16或者发动机18和马达16两者输出的扭矩。连续扭矩传递部件40可以是链、带或者具有输入(主动)区和输出(从动)区的其他机械环。连续扭矩传递部件40将发动机18和/或马达16的输出机械地结合到差速器42。更具体地,环形齿轮26和马达16均向延伸穿过主动部件46(诸如链轮等)的轴44提供机械输出。主动部件46可设置在环形齿轮26和马达16之间,使得主动部件46接收来自任一侧的扭矩。或者,可将马达16放置在主动部件46的与环形齿轮26处于同侧的一侧。主动部件46通过与连续扭矩传递部件40的机械结合来驱动从动部件48(例如,另一个链轮)。在远离轴44的相对端而结合到连续扭矩传递部件40的是差速器,所述差速器接收扭矩,并将扭矩分配到车辆的车轮52并在车辆的车轮52之间分配扭矩。鉴于上述的动力分流式混合动力,应清楚,传动系具有两个动力源。第一动力源是发动机18,其向行星齿轮组24传递扭矩。其他动力源只涉及电驱动系统,其包括马达16、发电机32和电池14,其中,电池14作为发电机32和马达16的能量储存介质。发电机32可以由行星齿轮组24驱动,或者可以作为马达向行星齿轮组24传递动力。应理解,图1中的动力分流式车辆仅为示例,并不意味着本公开限于这种布置。可以设想本公开的控制策略的范围内的其他动力分流车辆。然而,应理解,在所有的实施例中,都设置连续扭矩传递部件(代替扭矩减速齿轮组),以将扭矩从扭矩产生元件传递到车轮。当一个或两个动力源工作向车轮提供扭矩时,扭矩通过连续扭矩传递部件40传递。最终传递到车轮的组合扭矩是马达16提供的扭矩(马达扭矩)和环形齿轮26提供的扭矩(环形齿轮扭矩)之和,如下等式(1)中所示:Twheel=Tring+Tmotor(1)环形齿轮扭矩的量取决于发电机32提供的反作用扭矩,进而取决于发动机扭矩和命令的发动机转速的变化量。由此可见,当马达16和发动机18均传递全扭矩时,出现最大的可用车轮扭矩。基于下面的等式(2)规划期望的发动机功率:Peng_des=Pwheel_des+Plosses+Paccessory-Pbattery(2)其中,Pwheel_des是期望的车轮功率,Plosses是预计的电损失,Paccessory是电附件载荷(例如,HVAC,收音机等),以及Pbattery是用于荷电状态(SOC)管理的电池充电或放电的期望水平。给定期望的发动机功率,通过映射图来规划发动机转速和扭矩,所述映射图被设计为在高效的发动机转速设定点处传递规划后的发动机转速和扭矩。图2A示出了预定的发动机转速映射图,图2B示出了在给定上述标准的操作期间选择的规划后的发动机扭矩映射图。(图2B还包括下面将进一步描述的最小发动机扭矩极限和最小发动机功率线。)特别是在低车速下,可能出现车轮功率的量相对较小而车轮扭矩需求却相对较大的情况。例如,这种情况出现在当车辆停止时车辆的操作者需要快速完全加速(完全踩下加速踏板)时。在加速需求初期,车轮转速为零,因而车轮功率也为零,但是车轮扭矩需求处于最大。可能出现另一种类似的情况,当车辆在沙地或砂砾上车速低或为零时,车辆操作者急速地踩下加速踏板。根据本公开的各个实施例,控制器12被配置为使在上述的这些情况下传递的车轮扭矩最大化。假设完全踩下加速踏板时请求的车轮扭矩至少与最大的可用马达扭矩和最大的可用发动机扭矩之和一样大,在此提供的控制策略将确保在完全踩下加速踏板时的车轮扭矩是最大的。控制策略还将确保在部分地踩踏板的操作下可获得所请求的车轮功率。参照图3和图4示出和描述了由控制器12使用并实施的算法的一个例子。图3和图4是示出了根据本公开实施例的用于控制车辆的系统或方法的操作。如本领域普通技术人员将理解的,可以根据特定的应用或实施由软件和/或硬件来执行图3和图4中代表的操作或功能。可以以不同于明确示出或描述的顺序或序列来执行各个操作或功能,其可取决于特定的过程策略(诸如,事件驱动、中断驱动等)。同样地,虽然未明确示出,但在特定的操作条件下或特定的应用中,可重复地执行、并行地执行和/或省略一个或更多个操作、任务或功能。在一个实施例中,示出的操作可主要由软件、指令或代码实施,这些软件、指令或代码存储在永久性计算机可读存储装置中并由一个或更多个基于微处理器的计算机或用于控制关联的车辆组件的运转的控制器来执行。参照图3,例如,一个示例性算法100在102处响应于(例如)低车速和低车轮功率下的高扭矩需求(如上面解释的)而开始。首先,在104处,确定最小发动机扭矩输出极限(Tengine_min)。最小发动机扭矩输出极限确保发动机输出的扭矩足以满足所需求的车轮扭矩。利用最大马达扭矩极限(Tmotor_max),并假定发动机转速是恒定的,对于给定的车轮扭矩需求,发动机扭矩应超过传动比与车轮扭矩和马达扭矩极限之差的乘积,由下列关系式所示:Tengine_min≥传动比*(Twheel-Tmotor_max)(3)其中,如果设置齿轮,则传动比是主动部件46和从动部件48之间的差值的函数。当然,能够使用在轴44和差速器输入之间提供应该被计算在方程式(3)中的转速变化的其它机构。如果主动部件46和从动部件48之间没有传动差并且连续扭矩传递部件以1:1的传动比传递扭矩,则可以去掉传动差这个术语。在这种情况下,最小发动机扭矩输出极限直接与车轮扭矩和最大马达扭矩极限之差对应。在106处,利用所确定的最小发动机扭矩,能够使用图2B中的映射图来确定最小发动机功率(Pmin)。最小发动机功率代表了在期望的加速事件期间满足车轮扭矩需求所需的功率的最小量。在108处,确定防止电池过充电的发动机功率的最大极限(Pengine_max)。这个值代表了在考虑电池所能够接受的最大充电速率同时允许发动机传递的发动机功率的最大量。可以使用下面的等式(4)计算防止电池过充电的最大发动机功率并将所述最大发动机功率设定成极限:Pengine_max=Pwheel_des-Pbattery_charge_limit+Plosses+Paccessory(4)其中,Pbattery_charge_limit是在电池能够以最大速率接受充电的最大充电功率极限,这可受电池连接器和电池化学的设计限制。控制器设置最大功率极限,大体上由框110-114代表。如果满足车轮扭矩需求所需的最小发动机功率大于最大的可用发动机功率(考虑SOC过充电保护),则将来自环形齿轮并通过环形齿轮传递到连续扭矩传递部件的最小功率增大到至少为最大的可用发动机功率。更具体地,在110处,在Pmin和Pengine_max之间进行比较。如果最小发动机功率(Pmin)小于发动机功率的最大极限(Pengine_max),则在112处,控制器将最小环形齿轮功率阈值(Pmin_ring)设置为所确定的最小发动机功率(Pmin)。然而,如果最小发动机功率(Pmin)超过发动机功率的最大极限(Pengine_max),则在114处,控制器将阈值Pmin_ring设置为等于发动机功率的最大极限(Pengine_max)。在116处,利用上面的等式(2)来确定期望的发动机功率(Peng_des)。鉴于上面的描述,应理解,如果通过车轮功率需求确定的期望的发动机功率小于满足车轮扭矩所需的最小发动机功率,则控制器能够将发动机功率需求增大到这个值。这最终增大了从环形齿轮传递的功率。然而,如果通过车轮功率需求确定的期望的发动机功率已经超过满足车轮扭矩所需的最小发动机功率,则不需要这样的动作且能够保持发动机功率需求。给定上述参数,然后可以确定发动机功率命令,从而特别是在上述的低速、高扭矩需求的情况下使发动机能够输出满足车轮处的扭矩需求的功率。在118处,在期望的发动机功率(Peng_des)和最小环形齿轮功率阈值(Pmin-ring)(在110-114处确定的)之间进行比较。如果期望的发动机功率超过最小环形齿轮功率,则在120处,控制器将发动机功率命令设置为期望的发动机功率(Peng_des)。然而,如果最小环形齿轮功率超过期望的发动机功率,则在122处,控制器将发动机功率命令设置为最小环形齿轮功率。在124处,算法结束并可以返回。步骤118-122管理发动机功率设置并由控制器命令,使得环形齿轮输出的功率超过阈值,以向车轮提供期望的扭矩。图4示出了根据本公开的实施例提供期望的车轮扭矩的简化的、更高级别的控制策略或算法200。在202处,确定了满足车轮扭矩需求的最小发动机功率输出。在204处,确定当前最大的可用发动机输出,类似于在步骤108处所示的。在206处,以参照框110-114描述的类似的方式确定最小环形齿轮扭矩阈值。特别是,最小环形齿轮扭矩阈值与满足车轮扭矩需求所需要的最小发动机功率和最大的可用发动机功率中的较小者对应。在208处,控制器修正发动机输出,使得环形齿轮扭矩超过最小环形齿轮扭矩阈值。以上所述的本公开的各个实施例提供了改变发动机输出(功率)的策略,以传递满足车轮处所需扭矩的环形齿轮扭矩。简言之,控制策略确定和修正了发动机功率请求,使得产生的环形齿轮扭矩超过关联的阈值。可以利用发动机扭矩极限和所请求的车轮扭矩来确定环形齿轮阈值(详情如上)。在一些实施例中,确定并提供最小发动机功率请求,从而将规划出足够大的发动机扭矩以传递最小环形齿轮扭矩。这个最小发动机功率量在考虑发动机效率的同时提供期望的车轮扭矩。在一些实施例中,可以基于车轮功率请求和电池充电极限来确定最大发动机功率输出。当改变发动机输出以确保环形齿轮传递的扭矩高于环形齿轮扭矩阈值时,扭矩通过连续扭矩传递部件传递并被传递到车轮,以满足期望的和所需的车轮扭矩。应理解,参照上面的“扭矩”和“功率”(诸如最小环形齿轮功率阈值)可以通过扭矩和功率(功率=扭矩*转速)的简单的数学特性关系进行互换。因此,最小环形齿轮功率阈值通过简单地除以转速也可以是最小环形齿轮扭矩阈值。本公开不应受严格的“功率”阈值或者严格的“扭矩”阈值限制。可在步骤104和步骤106之间进行这种转换的例子。根据本公开的实施例,修正发动机功率以向车轮提供期望的扭矩。在此公开的过程、方法或者算法可以传递到可包括任何现有的可编程电子控制单元或专用的电子控制单元的处理装置、控制器或计算机,或者可以由这些处理装置、控制器或计算机来实现。同样地,可通过控制器或计算机以多种形式将所述过程、方法或算法存储为可执行的数据或指令,所述形式包括但不限于永久性存储在非可写存储介质(诸如只读存储器装置)上的信息或者可改变地存储在可写存储介质(诸如软盘、磁带、CD、随机存储器或其他磁性和光的介质)上的信息。所述过程、方法或算法也可以在软件可执行对象中实现。或者,所述过程、方法或算法也可以全部地或部分地使用合适的硬件组件(诸如,专用集成电路(ASIC)、现场可编程门阵列(FPGA)、状态机、控制器或其他硬件组件或装置,或者硬件、软件和固件组件的组合)来实现。虽然上面描述了示例性实施例,但是并不意味着这些实施例描述了权利要求所涵盖的所有可能的形式。说明书中使用的词语为描述性词语而非限制,并且应理解的是,在不脱离本公开的精神和范围的情况下,可作出各种改变。如之前所描述的,可组合各个实施例的特征以形成本发明的未被明确示出或描述的进一步的实施例。虽然各个实施例可能已被描述为提供优点或在一个或更多个期望的特性方面优于其他实施例或现有技术实施方式,但是本领域的普通技术人员应该认识到,根据具体应用和实施方式,一个或更多个特征可被折衷,以实现期望的整体系统属性。这些属性可包括但不限于:成本、强度、耐久性、生命周期成本、可销售性、外观、包装、尺寸、可维护性、重量、可制造性、装配容易性等。因此,被描述为在一个或更多个特性方面不如其他实施例或现有技术实施方式的实施例并不在本公开的范围之外,并且可以期望用于特定应用。

收缩
  • QQ咨询

  • 在线咨询
  • 在线咨询
  • 在线咨询
  • 在线咨询
  • 电话咨询

  • 02886312233