用于动力传动系统阻尼的离合器和电机控制(发明专利)

专利号:CN201510556718.3

申请人:福特全球技术公司

  • 公开号:CN105398449A
  • 申请日期:20150902
  • 公开日期:20160316
专利名称: 用于动力传动系统阻尼的离合器和电机控制
专利名称(英文): For power transmission system damping of the clutch and motor control
专利号: CN201510556718.3 申请时间: 20150902
公开号: CN105398449A 公开时间: 20160316
申请人: 福特全球技术公司
申请地址: 美国密歇根州迪尔伯恩市
发明人: 伯纳德·D·内佛西; 丹尼尔·斯科特·科尔文; 费列克斯·纳多瑞兹夫
分类号: B60W30/20; B60W20/00; B60W10/02 主分类号: B60W30/20
代理机构: 北京铭硕知识产权代理有限公司 11286 代理人: 郭鸿禧; 王秀君
摘要: 本发明提供一种用于动力传动系统阻尼的离合器和电机控制。一种车辆包括发动机、牵引马达、离合器和控制器。所述离合器选择性地将所述牵引马达结合至车轮。所述控制器响应于在所述牵引马达操作为部分地满足动力传动系统阻尼需求时所述牵引马达的扭矩输出达到扭矩极限,并且当所述离合器锁止时,使所述离合器打滑以完全满足动力传动系统阻尼需求。
摘要(英文): A vehicle includes an engine, a traction motor, a clutch, and a controller. The clutch selectively couples the traction motor to wheels. The controller, in response to a torque output by the fraction motor achieving a torque limit while operating to partially satisfy a demand for driveline damping and while the clutch is locked, slips the clutch to completely satisfy the demand for driveline damping.
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
一种控制车辆的方法,所述方法包括:响应于当电机操作为部分地满足动力传动系统阻尼需求时电机的扭矩输出达到扭矩极限,并且当结合电机和车轮的离合器锁止时,使离合器打滑以完全满足动力传动系统阻尼需求。

1.一种控制车辆的方法,所述方法包括: 响应于当电机操作为部分地满足动力传动系统阻尼需求时电机的扭矩输 出达到扭矩极限,并且当结合电机和车轮的离合器锁止时,使离合器打滑以 完全满足动力传动系统阻尼需求。

2.根据权利要求1所述的方法,其中,所述扭矩极限随着被构造为将电 力供应至电机的电池的荷电状态的降低而降低。

3.根据权利要求1所述的方法,其中,所述扭矩极限随着被构造为将电 力供应至电机的电池的温度的变化而变化。

4.根据权利要求1所述的方法,其中,所述扭矩极限随着电机的温度的 变化而变化。

5.根据权利要求1所述的方法,其中,所述离合器是变矩器的锁止离合 器。

PDF文件加载中,请耐心等待!
一种控制车辆的方法,所述方法包括:响应于当电机操作为部分地满足动力传动系统阻尼需求时电机的扭矩输出达到扭矩极限,并且当结合电机和车轮的离合器锁止时,使离合器打滑以完全满足动力传动系统阻尼需求。
原文:

1.一种控制车辆的方法,所述方法包括: 响应于当电机操作为部分地满足动力传动系统阻尼需求时电机的扭矩输 出达到扭矩极限,并且当结合电机和车轮的离合器锁止时,使离合器打滑以 完全满足动力传动系统阻尼需求。

2.根据权利要求1所述的方法,其中,所述扭矩极限随着被构造为将电 力供应至电机的电池的荷电状态的降低而降低。

3.根据权利要求1所述的方法,其中,所述扭矩极限随着被构造为将电 力供应至电机的电池的温度的变化而变化。

4.根据权利要求1所述的方法,其中,所述扭矩极限随着电机的温度的 变化而变化。

5.根据权利要求1所述的方法,其中,所述离合器是变矩器的锁止离合 器。

翻译:
用于动力传动系统阻尼的离合器和电机控制

技术领域

本公开涉及阻尼混合动力电动车辆中的噪声、振动和不平顺性。

背景技术

车辆中的噪声、振动和不平顺性(NVH)的来源可包括发动机、动力传 动系统或轮胎和道路表面之间的接触。来自动力传动系统的NVH会影响驾驶 性能。

发明内容

一种控制车辆的方法包括:响应于在电机操作为部分地满足动力传动系 统阻尼需求时电机的扭矩输出达到扭矩极限,并且当结合电机和车轮的离合 器锁止时,使离合器打滑以完全满足动力传动系统阻尼需求。

一种车辆包括发动机、牵引马达、被构造为选择性地将所述马达结合至 车轮的离合器以及控制器。所述控制器响应于在牵引马达操作为部分地满足 动力传动系统阻尼需求时牵引马达的扭矩输出达到扭矩极限,并且当离合器 锁止时,使所述离合器打滑以完全满足动力传动系统阻尼需求。

根据本发明的一个实施例,所述车辆还包括变矩器,其中,所述离合器 是变矩器的锁止离合器。

根据本发明的一个实施例,所述扭矩极限随着被构造为将电力供应至所 述牵引马达的电池的荷电状态的降低而降低。

根据本发明的一个实施例,所述扭矩极限随着被构造为将电力供应至所 述牵引马达的电池的温度的变化而变化。

根据本发明的一个实施例,所述扭矩极限随着所述牵引马达的温度的变 化而变化。

一种控制车辆的方法包括:响应于发动机给被构造为将电力供应至电机 的电池充电同时电机供应扭矩以至少部分地满足给定的动力传动系统阻尼需 求,基于电机的扭矩极限,使所述扭矩减小并使结合电机和车轮的离合器的 打滑增加。

根据本发明的一个实施例,与在电机供应小于扭矩极限的扭矩时相比, 在电机供应处于扭矩极限的扭矩时,所述增加的量更大。

根据本发明的一个实施例,所述减小的扭矩和增加的打滑用于完全满足 给定的动力传动系统阻尼需求。

根据本发明的一个实施例,所述扭矩极限随着电池的荷电状态的降低而 降低。

根据本发明的一个实施例,所述扭矩极限随着电池的温度的变化而变化。

根据本发明的一个实施例,所述扭矩极限随着电机的温度的变化而变化。

根据本发明的一个实施例,所述离合器是变矩器的锁止离合器。

附图说明

图1是混合动力电动车辆的示意图;

图2是描述了用于混合动力电动车辆的控制逻辑的流程图。

具体实施方式

在此描述本公开的实施例。然而,应理解的是,公开的实施例仅为示例 并且其它实施例可以采用多种和替代的形式。附图不一定按比例绘制;可放 大或缩小一些特征以示出特定部件的细节。因此,在此所公开的具体结构和 功能细节不应被解释为限制,而仅作为用于教导本领域技术人员以多种形式 使用本发明的代表性基础。如本领域的普通技术人员将理解的,参照任一附 图示出和描述的各种特征可与在一个或更多个其它附图中示出的特征相组 合,以产生未明显示出或描述的实施例。示出的特征的组合为典型应用提供 代表性实施例。然而,对于特定应用或实施,可期望与本公开的教导一致的 特征的各种组合和修改。

参照图1,示出了混合动力电动车辆(HEV)10的示意图。图1示出了 多个车辆组件之间的代表性关系。车辆中组件的物理布局和方位可以变化。 车辆10包括动力传动系统12。动力传动系统12包括驱动传动装置16的发 动机14。如下文将更详细地描述的,传动装置16包括电机(诸如,电动马 达/发电机(M/G))18、关联的牵引电池20、变矩器22以及多阶梯传动比 自动变速器或者齿轮箱24。

发动机14和M/G18两者都能够为HEV10提供原动力。发动机14总体 上代表可以包括内燃发动机(诸如,汽油、柴油或天然气驱动的发动机)或 燃料电池的动力源。发动机14产生发动机功率以及当发动机14和M/G18 之间的分离离合器26至少部分地接合时供应给M/G18的对应的发动机扭矩。 M/G18可以被实施为多种类型的电机中的任意一种。例如,M/G18可以是 永磁同步马达。电力电子器件28将电池20提供的直流电(DC)调节成符合 M/G18的要求。例如,电力电子器件可以向M/G18提供三相交流电(AC)。

发动机14可另外与提供空气进气压力增加或“助推”的涡轮增压器46结 合,以迫使更大体积的空气进入发动机14的燃烧室。与通过涡轮增压器46 提供至发动机14的增加的空气压力有关,燃料燃烧的速率可实现相应的增 加。因此,额外的空气增压允许发动机14获得额外的输出功率,从而提高发 动机的扭矩。

齿轮箱24可以包括通过摩擦元件(诸如,离合器和制动器(未示出)) 的选择性接合而选择性地置于不同齿轮比以建立期望的多个离散或阶梯传动 比的齿轮组(未示出)。可以通过连接和分离齿轮组的特定元件以控制变速 器输出轴38和变速器输入轴34之间的传动比的换档计划来控制摩擦元件。 齿轮箱24最终将动力传动系统输出扭矩提供至输出轴38。

如图1中的代表性实施例进一步所示,输出轴38连接至差速器40。差 速器40经由连接至差速器40的各个轮轴44而驱动一对车轮42。差速器传 输分配给每个车轮42的扭矩,同时允许轻微的转速差异(例如,当车辆转弯 时)。可以使用不同类型的差速器或类似的装置将扭矩从动力传动系统分配 至一个或更多个车轮。在一些应用中,例如取决于特定的运转模式或状况, 扭矩分配可以不同。

车辆10还包括基础制动系统54。所述系统可包括适合通过将固定片贴 到固定到轮子的转子而选择性地施加压力的摩擦制动器。在所述片和转子之 间施加的压力产生了摩擦以抵制车轮42的旋转,并且因此能够降低车辆10 的速度。

当分离离合器26至少部分地接合时,可以将动力流从发动机14传输到 M/G18或从M/G18传输到发动机14。例如,当分离离合器26接合时,M/G 18可作为发电机运转以将曲轴30经M/G轴32提供的旋转能转化成电能储存 在电池20中。如下面更详细地讨论的,通过能量再生施加在轴上的旋转阻力 可以作为制动器使用以使车辆减速。也可以将分离离合器26分离以将发动机 14与动力传动系统12的其余部分隔离,使得M/G18可以作为车辆10的唯 一驱动源运转。

可以通过至少一个控制器来支配动力传动系统12的操作状态。虽然通过 示例示出单个控制器(诸如车辆系统控制器(VSC)48),但是可以有包括 多个控制器的更大的控制系统。可以通过整个车辆10中的各种其它控制器来 影响单个控制器或控制系统。例如,可包括在代表性VCS48内的控制器包括 变速器控制模块(TCM)、制动系统控制模块(BSCM)、高电压电池能量 控制模块(BECM)以及负责各种车辆功能的相通信的其它控制器。至少一 个控制器可以统称为“控制器”,该“控制器”响应于来自多个传感器的信号而 命令多个致动器。VSC48响应可用于支配或影响若干车辆功能,诸如启动/ 停止发动机14、运转M/G18以提供车轮扭矩或为牵引电池20再充电、选择 或计划变速器换档等。VSC48还可包括与多种类型的计算机可读存储装置或 介质通信的微处理器或中央处理器(CPU)。例如,计算机可读存储装置或 介质可包括只读存储器(ROM)、随机存取存储器(RAM)和保活存储器 (KAM)中的易失性和非易失性存储。KAM是可以在CPU断电时用于存储 多个操作变量的永久或非易失性存储器。计算机可读存储装置或介质可以使 用任意数量的已知存储装置,例如PROM(可编程只读存储器)、EPROM(电 可编程只读存储器)、EEPROM(电可擦除可编程只读存储器)、闪存或能 存储数据的任何其它电、磁性、光学或其组合的存储装置来实现,这些数据 中的一些代表由控制器使用以控制发动机或车辆的可执行指令。

VSC48经由输入/输出(I/O)接口与各种发动机/车辆传感器和致动器通 信,所述输入/输出(I/O)接口可以被实施为提供各种原始数据或信号调节、 处理和/或转换、短路保护等的单个集成接口。或者,在将特定的信号提供至 CPU之前,一个或更多个专用硬件或固件芯片可以用于调节和处理该特定的 信号。如图1中的代表性实施例总体上示出的,VSC48可以将信号传达至发 动机14、涡轮增加器46、分离离合器26、M/G18、变速器齿轮箱24、变矩 器22、变矩器旁通离合器36和电力电子器件28和/或传达来自发动机14、 涡轮增加器46、分离离合器26、M/G18、变速器齿轮箱24、变矩器22、变 矩器旁通离合器36和电力电子器件28的信号。尽管未明确说明,但是本领 域的普通技术人员将认识到可以通过VSC48控制的在上文指出的每个子系 统中的多个功能或部件。可使用通过控制器执行的控制逻辑直接或间接致动 的参数、系统和/或部件的代表性示例包括燃料喷射正时、速率和持续时间、 节气门位置、(用于火花点火式发动机的)火花塞点火正时、进气/排气门正 时和持续时间、前端附件驱动(FEAD)部件(诸如,交流发电机)、空调压 缩机、电池充电、再生制动、M/G运转、用于分离离合器26、变矩器旁通离 合器36和变速器齿轮箱24的离合器压力等。例如,通过I/O接口传输输入 的传感器可以用于指示涡轮增压器增压压力、涡轮增压器转速、曲轴位置、 发动机转速(RPM)、车轮转速、车速、发动机冷却剂温度、进气歧管压力、 加速踏板位置、点火开关位置、节气门位置、空气温度、排气氧或其他排气 成分浓度或存在、进气流量、变速器档位、传动比或模式、变速器油温、变 速器涡轮转速、变矩器旁通离合器状态、减速或换档模式。

VSC48还包括扭矩控制逻辑特征。VSC48能够基于多种车辆输入解释 驾驶员请求。例如,这些输入可以包括档位选择(PRNDL)、加速踏板输入、 制动踏板输入、电池温度、电压、电流以及电池荷电状态(SOC)。VSC48 进而可以将命令信号发给变速器以控制M/G18的运转。

M/G18还经由轴32与变矩器22连接。因此,当分离离合器26至少部 分地接合时,变矩器22也连接至发动机14。变矩器22包括固定至M/G轴 32的泵轮和固定至变速器输入轴34的涡轮。变矩器22提供轴32和变速器 输入轴34之间的液力耦合。还可以提供内部旁通离合器36,使得旁通离合 器36在接合时摩擦地或机械地连接变矩器22的泵轮和涡轮,允许更高效的 动力传输。变矩器旁通离合器36可以运转以提供平顺的车辆起步。相反,当 旁通离合器36分离时,M/G18或发动机14可以不直接连接至差速器40和 轮轴44。例如,在减速期间,旁通离合器36可以在低车速下分离,以允许 发动机怠速并且传递很少的输出扭矩以驱动车轮或者不传递输出扭矩。

车辆10的驾驶员可以在加速踏板50处提供输入,并且产生所需扭矩、 功率或驱动指令以推进车辆10。通常,踩下和释放踏板52产生加速器输入 信号,所述加速器输入信号可以被VSC48分别解释为增加功率或减小功率的 需求。至少基于来自踏板的输入,控制器48可以在发动机14和/或M/G18 中的每个之间分配扭矩指令以满足驾驶员需求的车辆扭矩输出。

另外,车辆10的驾驶员可以在制动踏板52处提供输入以产生车辆制动 需求。踩下制动踏板52产生制动输入信号,该制动输入信号被控制器48解 释为使车辆减速的指令。进而,控制器48可以发出命令以产生至动力传动系 统输出轴的负扭矩的应用。另外或组合地,控制器可以发出激活制动系统54 的命令以施加摩擦制动阻力从而抑制车轮42的旋转。可将由动力传动系统和 摩擦制动器两者提供的负扭矩值分配以改变各自满足驾驶员的制动需求的 量。

控制器48还可控制齿轮箱24内换档的正时,以及分离离合器26和变矩 器旁通离合器36的接合或分离。与分离离合器26类似,变矩器旁通离合器 36可在接合位置和分离位置之间的范围内调节。这除由泵轮和涡轮之间的液 力耦合产生的可变打滑之外,还可在变矩器22中产生可变打滑。或者,根据 特定应用,变矩器旁通离合器36可以被操作为锁止或打开而不使用调节的操 作模式。

进一步地,在变矩器旁通离合器36的泵轮和涡轮之间的液力耦合用作弹 簧以阻尼由噪声、振动和不平顺性引起的振荡。如上所述,修正变矩器旁通 离合器36的可变打滑可优化变矩器22的阻尼效果。保持变矩器旁通离合器 36的打滑或打开位置可改变车辆的燃料效率。因此,优化变矩器22的阻尼 效果以保持锁止位置改善了车辆的燃料经济性。

为了利用发动机14驱动车辆,分离离合器26至少部分地结合(但是通 常锁止)以将至少一部分发动机扭矩通过分离离合器26传递至M/G18,并 且再从M/G18传递通过变矩器22和齿轮箱24。M/G18可以通过提供使轴 32转动的额外的驱动扭矩而辅助发动机14。该运转模式可以称为“混合动力 模式”。如上文提到的,还可操作VSC48以发出命令来分配发动机14和M/G 18两者的扭矩输出,使得两个扭矩输出的叠加满足来自驾驶员的加速器输入。

为了利用M/G18作为唯一动力源驱动车辆10,除了分离离合器26将发 动机14与动力传动系统12的其余部分隔离之外,动力流保持相同。例如, 这段时间期间可以禁止或关闭发动机14中的燃烧以节省燃料。牵引电池20 通过线路51将存储的电能传输至可以包括逆变器的电力电子器件28。电力 电子器件28将来自电池20的高电压直流电转换成M/G18使用的交流电。 VSC48还可向电力电子器件28发出命令,使得M/G18能够将正的或负的扭 矩提供至轴32。M/G18是唯一原动力的这种运转可以称为“纯电动”运转模 式。

此外,M/G18可以作为发电机运转以将来自动力传动系统12的动能转 换成电能储存在电池20中。例如,当发动机14提供用于车辆10的唯一推进 动力时,M/G18可以作为发电机运转。在车辆的动能通过齿轮箱24回传并 转换成储存在电池20中的电能的再生制动期间,M/G18也可用作发电机。

M/G18还可作为动力传动系统阻尼器来运转。在特定的运转状况下, M/G18还可提供用于由噪声、振动和不平顺性引起的振荡的动力传动系统阻 尼。例如,如果M/G18运转以提供动力传动系统阻尼,或者如果M/G18在 需要动力传动系统阻尼时没有过热,那么M/G18可提供动力传动系统阻尼。 指示M/G18可用于动力传动系统阻尼的其他运转条件包括但不限于诸如电 池电力极限在阈值之上、电池荷电状态在阈值之上、电池温度在阈值之上或 在阈值之下以及逆变器的温度在阈值之上或在阈值之下等条件。

这允许利用除变矩器旁通离合器36之外的第二装置来柔化(soften)动 力传动系统。因此,可能有利的是,优化利用M/G18和变矩器旁通离合器 36之间的平衡来改善车辆10的驾驶性能和燃料经济性。例如,作为替代, 可基于来自M/G18的动力传动系统阻尼的可用性来修正变矩器旁通离合器 36的接合计划。还可优化变矩器旁通离合器不锁止计划以在其通常不锁止的 状态下保持锁止或在齿轮就绪时锁止。如以上讨论的,当变矩器旁通离合器 36处于锁止位置时,改善了整体的燃料消耗效率。可基于M/G18提供动力 传动系统阻尼的可用性来优化变矩器旁通离合器不锁止计划和打滑条件。优 化变矩器旁通离合器36的打滑条件使变矩器旁通离合器36处于锁止位置的 时间量最大化。使变矩器旁通离合器36锁止的时间量最大化提供车辆的最佳 的燃料效率和燃料经济性。优化变矩器旁通离合器36的打滑条件和接合计划 是在优选的实施例中并在下面进行讨论,然而,也可优化其它离合器打滑条 件和接合计划。例如,来自M/G18的下游的离合器(例如,离合器起步)可 利用下面描述的修正的打滑条件和接合计划来优化车辆的整体的燃料效率。

参照图2,描述了使用修正的变矩器旁通离合器不锁止计划的控制逻辑。 在100处,VSC48确定车辆10是否正以“纯电动”操作模式运转。如上所述, 在100处确定的“纯电动”操作模式发生在M/G18是车轮的扭矩的唯一提供者 时。因此,如果在100处VSC48确定车辆正在“纯电动”操作模式下运转,那 么M/G18可能可用于阻尼动力传动系统振荡以降低噪声、振动和不平顺性。

在120处,VSC48将确定M/G18是否可用于阻尼动力传动系统振荡。 在120处,VSC48可利用M/G18的多个操作条件来确定来自M/G18的可 用的动力传动系统阻尼的量。如果M/G18充电良好并且有能力来提供动力传 动系统阻尼,那么VSC48可命令M/G18来阻尼动力传动系统振荡。如果 M/G不过热、如果逆变器不过热或者如果电池20不过热,那么在120处也可 确定M/G18能够提供动力传动系统阻尼。M/G18的任何操作条件可被用来 确定M/G18是否能够提供动力传动系统阻尼。例如,当M/G18的动力传动 系统阻尼扭矩输出达到扭矩极限时,扭矩极限随着电池20的荷电状态的降低 而降低。进一步地,扭矩极限随着电池20的温度的变化而变化。同样地,扭 矩极限随着M/G18的温度的变化而变化。

如果在120处,VSC48确定M/G18充电不良并且不能够提供动力传动 系统阻尼,那么在160处保持未修正的变矩器旁通离合器不锁止计划。同样 地,在140处,VSC48可命令变矩器旁通离合器36保持与“纯电动”操作模 式一致的打滑条件或未修正的接合计划。

如果在120处,VSC48确定M/G18充电良好并能够提供动力传动系统 阻尼,那么VSC48可命令变矩器旁通离合器36与修正的计划一致地接合和 不锁止。在180处,VSC48可命令M/G18提供动力传动系统阻尼并命令变 矩器旁通离合器36使用修正的接合计划。在180处,由于M/G18提供动力 传动系统阻尼,所以可优化变矩器旁通离合器36打滑条件以允许改善车辆的 驾驶性能。如果M/G18只能够提供部分满足阻尼需求所必需的一部分阻尼, 那么可优化变矩器旁通离合器接合计划以允许变矩器旁通离合器36进一步 阻尼动力传动系统上的振荡。例如,VSC48可命令变矩器旁通离合器36打 滑以完全满足动力传动系统阻尼需求。

同样地,在200处,VSC48可命令变矩器旁通离合器36使用修正的不 锁止条件。在200处,可优化变矩器旁通离合器不锁止计划以允许变矩器旁 通离合器在典型的不锁止的情况期间保持锁止位置。如上所述,保持变矩器 旁通离合器36的锁止位置允许改善车辆的燃料经济性。例如,如果变矩器旁 通离合器36不锁止来阻尼动力传动系统,那么轻踩事件可损失(cost)燃料 经济性。通过在这种情况下使用M/G18,保持了动力传动系统阻尼功能并且 可改善燃料经济性。因此,通过优化变矩器旁通离合器36可被锁止的条件, 还可优化车辆的燃料经济性。利用M/G18结合变矩器旁通离合器36来柔化 动力传动系统振荡允许VSC48提供优化的驾驶性能和燃料经济性。

返回参照100,VSC48还可确定车辆是否正以“混合动力”操作模式运转。 当车辆10处于“混合动力”操作模式时,车辆发动机14提供至车轮的扭矩。 由于在100处车辆处于“混合动力”操作模式并且发动机开启,所以变矩器旁 通离合器36可提供扭转隔离。扭转隔离发生在两个扭矩产生者(M/G18和 发动机14)和动力传动系统之间。没有扭转隔离的突然的扭矩变化在车辆动 力传动系统上产生噪声、振动和不平顺性。

如果在100处,VSC48确定车辆正以“混合动力”操作模式运转,那么在 240处,VSC48可查看M/G18的某些操作条件。在240处,M/G18的操作 条件允许VSC48确定M/G18是否具有足够荷电和能力来提供动力传动系统 阻尼。例如,在240处,VSC48可检查电池20是否完全充电。

如果在240处电池20完全充电,则在300处,VSC48可确定M/G18是 否具有足够的荷电和能力来提供动力传动系统阻尼。如果在300处,VSC48 确定M/G18没有足够的荷电或能力来提供动力传动系统阻尼,则在360处, VSC48命令变矩器旁通离合器36遵循未修正的接合计划。在“混合动力”操 作模式期间,未修正的接合计划提供变矩器旁通离合器36的正常操作。同样 地,如果VSC48确定M/G18不能提供动力传动系统阻尼,则在380处,VSC 48命令变矩器旁通离合器36遵循未修正的不锁止条件。在“混合动力”操作模 式期间,未修正的不锁止条件提供变矩器旁通离合器36的正常操作。

如果发动机14连接,则在240处检查车辆电池20是优选的实施例但不 是限制性的实施例。VSC48可利用M/G18的影响燃料经济性和驾驶性能的 任何操作条件。例如,如果在240处电池20没有被完全充电,则在260处, VSC48可计算燃料经济性损失(fueleconomypenalty)。在260处的燃料经 济性损失是将计划的变矩器旁通离合器打滑的燃料经济性损失与保持电池荷 电并提供M/G18动力传动系统阻尼的燃料经济性损失进行比较。因此,响应 于发动机14对电池20进行充电同时M/G18供应扭矩以至少部分地满足给定 的动力传动系统阻尼需求,VSC48可基于M/G18的扭矩极限命令M/G18 减小动力传动系统阻尼扭矩并增加变矩器旁通离合器36的打滑。增加发动机 转速可允许发动机功率更有效地给电池充电。在280处,VSC48可选择具有 最小燃料经济性损失的策略。这允许VSC48改善车辆的燃料经济性同时传递 驾驶员需求的扭矩并为电池充电。

VSC48还可被配置为计算保持电池荷电并提供马达阻尼的驾驶性能损 失。驾驶性能损失可基于M/G18的影响驾驶性能或燃料经济性的任何操作条 件。例如,在260处,VSC48可将计划的旁通变矩器打滑的驾驶性能损失与 保持电池荷电并提供马达阻尼的驾驶性能损失进行比较。同样地,在260处, VSC48还可将计划的旁通变矩器打滑的驾驶性能损失与保持电池荷电并提 供马达阻尼的燃料经济性损失进行比较,或者反之亦然。在280处,VSC48 还可选择具有最小的驾驶性能损失的策略。在280处,VSC48还可被配置为: 在影响整体车辆性能的各种车辆操作期间,选择调节驾驶性能损失和燃料经 济性损失的策略。

如果在240处,M/G18的操作条件表明荷电和能力足以提供动力传动系 统阻尼,则在300处,VSC48可确定来自M/G18的动力传动系统阻尼是否 可用。如果M/G18可用来提供动力传动系统阻尼,那么在320处,VSC48 命令变矩器旁通离合器36遵循修正的“混合动力”操作模式接合计划。在320 处,VSC48可计算打滑损失并命令M/G18提供足够的动力传动系统阻尼以 补偿打滑损失。打滑损失可基于变矩器旁通离合器36的打滑条件和来自M/G 18的提供动力传动系统阻尼的动力。通过利用执行动力传动系统阻尼所需要 的动力来优化变矩器旁通离合器36的接合计划,改善了整体的车辆的驾驶性 能。

同样地,在340处,VSC48还可命令变矩器旁通离合器36遵循修正的 不锁止计划。在340处,VSC48计算不锁止的损失并命令M/G18提供足够 的动力传动系统阻尼以补偿不锁止的损失。不锁止的损失可基于变矩器旁通 离合器36的不锁止条件和来自M/G18的提供动力传动系统阻尼的动力。通 过利用执行动力传动系统阻尼所需要的动力来优化变矩器旁通离合器36的 不锁止计划,改善了整体的车辆燃料经济性。因此,利用变矩器结合M/G18 柔化车辆动力传动系统改善了整体的车辆性能。

虽然上面描述了示例性实施例,但是并不意味着这些实施例描述了权利 要求所囊括的所有可能的形式。说明书中使用的词语为描述性词语而非限制, 并且应理解的是,在不脱离本公开的精神和范围的情况下,可作出各种改变。 如前所述,可组合各个实施例的特征以形成可能未被明确描述或说明的本发 明的进一步的实施例。虽然能够将各个实施例描述为在一个或更多个期望的 特性方面提供优点或优于其他实施例或现有技术的实施,但是本领域的普通 技术人员应该认识到,取决于具体的应用和实施方式,一个或更多个特点或 特性可被折衷,以实现期望的整体系统属性。这些属性可包括但不限于成本、 强度、耐用性、生命周期成本、市场性、外观、包装、尺寸、维修保养方便 性、重量、可制造性、易组装性等。因此,被描述为在一个或更多个特性方 面不如其他实施例或现有技术的实施方式的实施例并不在本公开的范围之 外,并且对于特定的应用而言会是令人满意的。

收缩
  • QQ咨询

  • 在线咨询
  • 在线咨询
  • 在线咨询
  • 在线咨询
  • 电话咨询

  • 02886312233