一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法(发明专利)

专利号:CN201610130591.3

申请人:北京航空航天大学

  • 公开号:CN105583393A
  • 申请日期:20160308
  • 公开日期:20160518
专利名称: 一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法
专利名称(英文): An aluminum alloy of an automobile chassis for forming low-pressure casting metal of the casting pressure sequential supercharging method for the crystallization
专利号: CN201610130591.3 申请时间: 20160308
公开号: CN105583393A 公开时间: 20160518
申请人: 北京航空航天大学
申请地址: 100191 北京市海淀区学院路37号
发明人: 张花蕊; 张虎
分类号: B22D18/04 主分类号: B22D18/04
代理机构: 北京永创新实专利事务所 11121 代理人: 李有浩
摘要: 本发明公开了一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法,该方法在升液、充型和结晶增压阶段,延续现有铝合金铸件低压铸造工艺,升液压力、充型压力和结晶增压压力控制在15~21kPa、25~35kPa和80~100kPa。在结晶保压阶段和卸压阶段之间,增加了顺序增压阶段。根据铸件结构特点和凝固顺序,设定多个特征部位。确定特征部位A开始凝固后,开始增大结晶保压压力;确定特征部位B开始凝固后,加大增压速度;待特征部位C开始凝固后,继续加大增压速度20~40kPa/s,直至结晶保压压力增大到到310~1000kPa,然后保压直至特征部位D凝固结束。本发明方法使得凝固补缩效果和铸件力学性能显著提高,同时避免了铝液飞溅、铸件飞边毛刺等缺陷,显著减低了对模具结构和铸型合模力的要求。
摘要(英文): The invention discloses an aluminum alloy of an automobile chassis for forming low-pressure casting metal of the casting pressure sequential supercharging method for the crystallization, the method in the liquid-lift, filling and crystallization supercharging stage, renewal of the existing aluminum alloy casting low pressure casting process, lift pressure, filling pressure in the supercharging pressure control and crystallization of 15-21kPa, 25-35kPa and 80-100kPa. In crystallization stage between pressure and pressure relief stage, sequential supercharging stage is increased. According to the structural characteristics of the casting and solidification order, setting a plurality of feature. Determining the feature A begins to solidify, crystallization begins to increase the holding pressure; determining the feature B begins to solidify, increase supercharging speed; to be feature after C begins to solidify, continue to increase supercharging speed 20-40kPa/s, the holding pressure is increased until the crystallization into the 310-1000kPa, then until the feature D pressure solidification completion. The method of the invention so that the solidified feeding effect and casting mechanical performance is notably improved, at the same time avoid the splashing of molten aluminum, casting defects such as burr, significantly reducing the clamping force to the mold structure and the requirements of the casting mold.
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;其特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特征部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在结晶保压阶段与卸压阶段之间增加了结晶保压后顺序增压阶段;(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行步骤B;(B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行步骤C;(C)在特征部位C开始凝固后,以20~40kPa/s的速度增大结晶保压压力,直到结晶保压压力到310~1000kPa,然后进入保压阶段;(D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保压10~60s后卸压。

1.一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压 铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;其 特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特征 部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在结晶保 压阶段与卸压阶段之间增加了结晶保压后顺序增压阶段; (A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B; (B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部 位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行 步骤C; (C)在特征部位C开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段; (D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保 压10~60s后卸压。

2.一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压 铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;其 特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特征 部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在所述的 结晶保压阶段与所述的卸压阶段之间增加了结晶保压后顺序增压阶段; (A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B; (B)在特征部位B开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段; (C)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保 压10~60s后卸压。

3.依据权利要求1所述的金属型低压铸造成型用结晶保压后顺序增压方法 制备铝合金汽车底盘铸件,其特征在于有下列步骤: 步骤一,升液阶段; 调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s; 步骤二,充型阶段; 调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝 液从浇口进入型腔,直至将型腔全部充满; 步骤三,结晶增压阶段; 经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa; 步骤四,结晶保压阶段; 在增压压力达到80~100kPa后,进入结晶保压阶段; 步骤五,结晶保压后顺序增压阶段; (A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B; (B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部 位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行 步骤C; (C)在特征部位C开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段; (D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保 压10~60s。 步骤六,卸压放气阶段; 经步骤五后,待铸件凝固完毕,解除保温炉内的气体压力,使升液管和浇道口未 凝固的铝液流回到保温炉中。

4.依据权利要求2所述的金属型低压铸造成型用结晶保压后顺序增压方法 制备铝合金汽车底盘铸件,其特征在于有下列步骤: 步骤一,升液阶段; 调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s; 步骤二,充型阶段; 调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝 液从浇口进入型腔,直至将型腔全部充满; 步骤三,结晶增压阶段; 经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa; 步骤四,结晶保压阶段; 在增压压力达到80~100kPa后,进入结晶保压阶段; 步骤五,结晶保压后顺序增压阶段; (A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B; (B)在特征部位B开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段; (C)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续 保压10~60s。 步骤六,卸压放气阶段; 经步骤五后,待铸件凝固完毕,解除保温炉内的气体压力,使升液管和浇道口未 凝固的铝液流回到保温炉中。

5.根据权利要求3或4所述的一种铝合金汽车底盘铸件金属型低压铸造成 型用结晶保压后顺序增压方法,其特征在于:制得的铝合金铸件在模具结构和合模力 不变的情况下,能够将其强度提高10~50%,延伸率提高25~50%。

6.根据权利要求3或4所述的一种铝合金汽车底盘铸件金属型低压铸造成 型用结晶保压后顺序增压方法,其特征在于:所述方法能够制备转向节、控制臂、副 车架和轮毂支架类复杂变截面高品质铸件。

PDF文件加载中,请耐心等待!
一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;其特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特征部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在结晶保压阶段与卸压阶段之间增加了结晶保压后顺序增压阶段;(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行步骤B;(B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行步骤C;(C)在特征部位C开始凝固后,以20~40kPa/s的速度增大结晶保压压力,直到结晶保压压力到310~1000kPa,然后进入保压阶段;(D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保压10~60s后卸压。
原文:

1.一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压 铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;其 特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特征 部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在结晶保 压阶段与卸压阶段之间增加了结晶保压后顺序增压阶段; (A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B; (B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部 位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行 步骤C; (C)在特征部位C开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段; (D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保 压10~60s后卸压。

2.一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压 铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;其 特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特征 部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在所述的 结晶保压阶段与所述的卸压阶段之间增加了结晶保压后顺序增压阶段; (A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B; (B)在特征部位B开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段; (C)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保 压10~60s后卸压。

3.依据权利要求1所述的金属型低压铸造成型用结晶保压后顺序增压方法 制备铝合金汽车底盘铸件,其特征在于有下列步骤: 步骤一,升液阶段; 调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s; 步骤二,充型阶段; 调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝 液从浇口进入型腔,直至将型腔全部充满; 步骤三,结晶增压阶段; 经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa; 步骤四,结晶保压阶段; 在增压压力达到80~100kPa后,进入结晶保压阶段; 步骤五,结晶保压后顺序增压阶段; (A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B; (B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部 位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行 步骤C; (C)在特征部位C开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段; (D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保 压10~60s。 步骤六,卸压放气阶段; 经步骤五后,待铸件凝固完毕,解除保温炉内的气体压力,使升液管和浇道口未 凝固的铝液流回到保温炉中。

4.依据权利要求2所述的金属型低压铸造成型用结晶保压后顺序增压方法 制备铝合金汽车底盘铸件,其特征在于有下列步骤: 步骤一,升液阶段; 调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s; 步骤二,充型阶段; 调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝 液从浇口进入型腔,直至将型腔全部充满; 步骤三,结晶增压阶段; 经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa; 步骤四,结晶保压阶段; 在增压压力达到80~100kPa后,进入结晶保压阶段; 步骤五,结晶保压后顺序增压阶段; (A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B; (B)在特征部位B开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段; (C)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续 保压10~60s。 步骤六,卸压放气阶段; 经步骤五后,待铸件凝固完毕,解除保温炉内的气体压力,使升液管和浇道口未 凝固的铝液流回到保温炉中。

5.根据权利要求3或4所述的一种铝合金汽车底盘铸件金属型低压铸造成 型用结晶保压后顺序增压方法,其特征在于:制得的铝合金铸件在模具结构和合模力 不变的情况下,能够将其强度提高10~50%,延伸率提高25~50%。

6.根据权利要求3或4所述的一种铝合金汽车底盘铸件金属型低压铸造成 型用结晶保压后顺序增压方法,其特征在于:所述方法能够制备转向节、控制臂、副 车架和轮毂支架类复杂变截面高品质铸件。

翻译:
一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法

技术领域

本发明涉及一种采用低压铸造工艺制作铝合金汽车底盘铸件的方法,更特别地 说,是一种按照顺序凝固时间在进入结晶保压阶段后继续顺序增压的、制备铝合金汽 车底盘铸件的、金属型低压铸造成型用结晶保压后顺序增压方法。

背景技术

近年来,随着汽车轻量化要求的提高,铝合金结构件在汽车上的应用越来越广泛。 以底盘悬架系统为例,铝合金前/后转向节应用比例已接近50%,摆臂、控制臂类零 件的铝合金应用比例也达到30%左右。1995年,宝马5系车就采用了全铝悬架, 使悬挂系统质量减轻了15%;前桥、后桥采用了铝合金,减重65kg。中高端车型更 多的应用铝合金零件,而在低端车型上应用铝合金材料由于价格原因受到很大限制。 降低成本成为汽车铝合金零件生产企业努力的方向。

铸造成型铝合金汽车底盘构件的常用材料为A356和A380等,常用的铸造工艺 有重力金属型铸造、低压铸造、高压铸造、差压铸造、高真空压铸和半固态铸造等。 差压铸造工艺较多用于生产转向节、控制臂等外形复杂、截面变化大、不能产生缩孔 缩松等铸造缺陷的高品质铸件。

差压铸造和低压铸造的共同特点在于:(1)充型速度可控,金属液流动平稳、 减少了二次夹杂;(2)铸件在压力下凝固,补缩效果好、组织致密,致密度和力学 性能显著提高。其差别在于:差压铸造有上下两个压力罐,下压力罐为保温炉和铝液 坩埚,上压力罐为铸型(砂型或金属型模具),而低压铸造仅有一个下压力罐,铸型 直接暴露在大气中。与低压铸造相比,差压铸造铸件在较大的压力环境下结晶凝固, 组织更加致密,但差压铸造的上下罐结构带来的操作不便,以及更复杂的结构和控制 系统带来的设备价格增加,导致差压铸造的应用远不及低压铸造普及。

低压铸造工艺过程可用作用在金属液表面的压力-时间曲线来反应。典型的压力- 时间曲线包括升液阶段、充型阶段、结壳增压阶段、结壳保压阶段、结晶增压阶段、 结晶保压阶段以及卸压阶段等七个不同工艺阶段。金属型低压铸造一般省去结壳阶 段,因此,金属型低压铸造工艺过程为:升液、充型、结晶增压、结晶保压和卸压五 个阶段。

结晶增压压力直接影响了凝固补缩效果,结晶增压压力越高,凝固补缩效果越好, 越有利于消除缩孔缩松等缺陷,提高组织致密度。低压铸造的结晶增压压力一般为 50~80kPa,特殊条件下增大到80~150kPa。

对于铝合金金属型低压铸造,实际生产中考虑到铸型合模力的限制以及模具间缝 隙带来的铝液溢出飞溅、铸件飞边毛刺等问题,限制了通过提高结晶增压压力进一步 提高铸件组织致密度和力学性能的可行性。

发明内容

本发明的目的就在于针对复杂形状、变截面铝合金汽车底盘铸件金属型低压铸造 成型难以实现高结晶增压压力的问题,结合该类铸件的结构特点和顺序凝固工艺要 求,提出一种在进入结晶保压阶段后根据凝固顺序持续增压的铝合金铸件金属型低压 铸造成型用加压方法,以进一步减少缩孔缩松等铸造缺陷、提高铸件组织致密度和力 学性能。

本发明的一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压 铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;其 特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特征 部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在结晶保 压阶段与卸压阶段之间增加了结晶保压后顺序增压阶段;

(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B;

(B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部 位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行 步骤C;

(C)在特征部位C开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段;

(D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保 压10~60s后卸压。

本发明的另一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低 压铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段; 其特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特 征部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在所述 的结晶保压阶段与所述的卸压阶段之间增加了结晶保压后顺序增压阶段;

(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B;

(B)在特征部位B开始凝固后,以20~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段;

(C)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保 压10~60s后卸压。

本发明的一种制备铝合金汽车底盘铸件的金属型低压铸造成型用结晶保压后顺 序增压方法优点在于:

(1)采用本发明方法制备A356铝合金铸件,凝固补缩效果显著提高。与现有低 压铸造加压方法相比,在模具结构和合模力不变的情况下,可以提高抗拉强 度10~50%,提高延伸率25~50%。显著减低了对模具结构和铸型合模力 的要求,同时避免了铝液溢出飞溅、铸件飞边毛刺等缺陷。

(2)采用本发明方法制备复杂形状、变壁厚的高品质铝合金铸件,可以实现差压 铸造的致密度和力学性能指标,同时避免了差压铸造的上下罐结构带来的操 作不便,以及更复杂的结构和控制系统带来的设备价格增加等问题,可以更 好的适应汽车底盘构件等铝合金铸件低成本大批量生产要求。

附图说明

图1A是汽车后转向节的结构特征示意图。

图1B是实施例1的结晶保压顺序增压方式的压力-时间曲线图。

图2A是汽车用控制臂的结构特征示意图。

图2B是实施例2的结晶保压顺序增压方式的压力-时间曲线图。

图3是实施例3的结晶保压顺序增压方式的压力-时间曲线图。

具体实施方式

下面将结合附图和实施例对本发明做进一步的详细说明。

针对转向节、控制臂、副车架等铝合金汽车底盘铸件外形复杂、截面变化大等特 点,差压铸造或低压铸造时通常采用顺序凝固原则,既浇口(升液管)放在厚大部位 处,充型过程中,高温铝液自浇口流出充满铸件,最后到达远离浇口的较薄部位;凝 固过程中,远离浇口的较薄部位先凝固,然后逐渐向浇口部位顺序凝固,以实现良好 的补缩效果。

在本发明中,根据铸件结构特点和凝固顺序,设定多个特征部位,即选择距离浇 口最远的端部薄壁处为特征部位A,选择距离浇口次远的壁厚突变处为特征部位B, 选择距离浇口较近的壁厚突变处为特征部位C,选择浇口中心为特征部位D。

本发明提出的是一种增加了结晶保压后顺序增压的金属型低压铸造方法来制备 铝合金汽车底盘铸件(即一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后 顺序增压方法),本发明方法包括有:升液阶段、充型阶段、结晶增压阶段、结晶保 压阶段、结晶保压后顺序增压阶段和卸压放气阶段。具体地说:

步骤一,升液阶段;

调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s;

将15~21kPa的压缩空气通入密封的保温炉中,铝液在压力的作用下沿升液管 平稳上升至铸型浇口处,并流入铸型中;

步骤二,充型阶段;

调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝 液从浇口进入型腔,直至将型腔全部充满;

步骤三,结晶增压阶段;

经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa;

步骤四,结晶保压阶段;

在增压压力达到80~100kPa后,进入结晶保压阶段;

步骤五,结晶保压后顺序增压阶段;

在本发明中,结晶保压后顺序增压方法具体视铸件尺寸和结构、模具状态和冷却 条件而有差异。

所述的结晶保压后顺序增压方法是指:

(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B;

(B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部 位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行 步骤C;

(C)在特征部位C开始凝固后,以10~40kPa/s的速度增大结晶保压压力, 直到结晶保压压力到310~1000kPa,然后进入保压阶段;

(D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保 压10~60s;

步骤六,卸压放气阶段;

经步骤五后,待铝合金汽车底盘铸件凝固完毕,解除保温炉内的气体压力,使升 液管和浇道口未凝固的铝液流回到保温炉中。

在本发明中,另一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序 增压方法包括有:升液阶段、充型阶段、结晶增压阶段、结晶保压阶段、结晶保压后 顺序增压阶段和卸压放气阶段。具体地说:

步骤一,升液阶段;

调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s;

将15~21kPa的压缩空气通入密封的保温炉中,铝液在压力的作用下沿升液管 平稳上升至铸型浇口处,并流入铸型中;

步骤二,充型阶段;

调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝 液从浇口进入型腔,直至将型腔全部充满;

步骤三,结晶增压阶段;

经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa;

步骤四,结晶保压阶段;

在增压压力达到80~100kPa后,进入结晶保压阶段;

步骤五,结晶保压后顺序增压阶段;

(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力, 直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部 位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行 步骤B;

(B)在特征部位B开始凝固后,以20~40kPa/s的速度增大结晶保压压力,直 到结晶保压压力到310~1000kPa,然后进入保压阶段;

(C)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保压 10~60s;

步骤六,卸压放气阶段;

经步骤五后,解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到 保温炉中。

实施例1

后转向节,A356合金,重2.8kg。浇注温度为710℃,模具材质H13钢,模 具初始温度为350℃,冷却方式为9路水冷与3路风冷组合。转向节构形及特征部 位如图1A所示。图1A的结构参考现代制造工程2014年第4期《汽车后转向节轻 量化设计与试验验证》,作者张琦等。

参见图1B所示的压力-时间曲线图,采用金属型低压铸造成型用结晶保压后顺 序增压方法制备铝合金后转向节铸件的步骤有:

步骤一,升液阶段;

在升液压力为18kPa、升液速度为1.8kPa/s的条件下,铝液沿升液管平稳上 升至铸型浇口处,并流入铸型中;

步骤二,充型阶段;

在充型压力为25kPa、充型速度为0.5kPa/s的条件下,铝液从浇口充入型腔, 直至型腔全部充满;

步骤三,结晶增压阶段;

铝液充满铸型后,快速增大结晶压力,在5.5s增压压力至80kPa;

步骤四,结晶保压阶段;

增压压力达到80kPa后,进入结晶保压阶段;

步骤五,结晶保压后顺序增压阶段;

在本发明中,改进的结晶保压顺序增压方式进行结晶保压处理,其压力-时间曲 线如图1B所示。

(A)特征部位A在充型10s后开始凝固,此时开始以10kPa/s的速度增大 结晶保压压力到100kPa,然后保压到特征部位B开始凝固;

(B)特征部位B充型13s后开始凝固,此时开始以20kPa/s的速度增大结 晶保压压力,至特征部位C开始凝固时,结晶保压压力增大到220kPa;

(C)特征部位C充型19s后开始凝固,此时开始以30kPa/s的速度增大结 晶保压压力,直到结晶保压压力到500kPa,然后进入保压阶段;

(D)特征部位D在充型完成后190s凝固结束,继续保压10s;

步骤六,卸压放气阶段;

经步骤五后,解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到 保温炉。

对比实施例1

采用与实施例1相同的步骤一至步骤三,不同之处在于省略了步骤五的结晶保 压后顺序增压的处理。

继步骤三后,在增压压力达到80kPa后,开始结晶保压200s,随后解除保温 炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉。

将实施例1和对比实施例1制得的A356合金转向节铸件,经T6热处理后,测 试其抗拉强度、屈服强度和延伸率性能。

采用Instron8801型号拉伸试验机测量,对比实施例1制得的转向节的力学性 能:抗拉强度、屈服强度和延伸率分别为252MPa、205MPa、8.2%。

采用Instron8801型号拉伸试验机测量,实施例1制得的转向节的力学性能: 抗拉强度、屈服强度和延伸率分别达到335MPa、286MPa、12.2%。

通过对比可知,经本发明方法所得转向节的抗拉强度、屈服强度和延伸率提高了 32.9%、39.5%和48.8%,达到了差压铸造的力学性能指标。

实施例2

下控制臂,A356合金,重2.4kg。浇注温度为720℃,模具材质H13钢,模 具初始温度为250℃,冷却方式为6路水冷与3路风冷组合。控制臂构形及特征部 位如图2A所示。图2A的结构参考《汽车控制臂挤压铸造数值模拟及工艺优化》,作 者邢志威等。

参见图2B所示的压力-时间曲线图,采用金属型低压铸造成型用结晶保压后顺 序增压方法制备铝合金下控制臂铸件的步骤有:

步骤一,升液阶段;

在升液压力为19kPa、升液速度为1.9kPa/s的条件下,铝液沿升液管平稳上 升至铸型浇口处,并流入铸型中;

步骤二,充型阶段;

在充型压力为26kPa、充型速度为0.7kPa/s的条件下,铝液从浇口充入型腔, 直至型腔全部充满;

步骤三,结晶增压阶段;

铝液充满铸型后,快速增大结晶压力,在6s增压压力至85kPa;

步骤四,结晶保压阶段;

增压压力达到85kPa后,进入结晶保压阶段;

步骤五,结晶保压后顺序增压阶段;

(A)特征部位A在充型8s后开始凝固,此时开始以15.5kPa/s的速度增 大结晶保压压力,直到结晶保压压力到130kPa,然后保压到特征部位B开始凝固;

(B)特征部位B充型12s后开始凝固,此时开始以30kPa/s的速度增大结 晶保压压力,直到结晶保压压力到900kPa,然后进入保压阶段;

(C)特征部位D在充型完成后130s凝固结束,继续保压30s;

步骤六,卸压放气阶段;

经步骤五后解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保 温炉。

对比实施例2

采用与实施例2相同的步骤一至步骤三,不同之处在于省略了步骤五的结晶保 压后顺序增压的处理。

继步骤三后,在增压压力达到85kPa后,开始结晶保压160s,随后解除保温 炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉。

将实施例2和对比实施例2制得的A356合金转向节铸件,经T6热处理后,测 试其抗拉强度、屈服强度和延伸率性能。

采用Instron8801型号拉伸试验机测量,对比实施例2制得的控制臂的力学性 能:其抗拉强度、屈服强度和延伸率分别达到256MPa、199MPa、8.4%。

采用Instron8801型号拉伸试验机测量,实施例2制得的控制臂的力学性能: 抗拉强度、屈服强度和延伸率分别达到345MPa、285MPa、12.5%。

经本发明方法处理后的控制臂的抗拉强度、屈服强度和延伸率提高了34.8%、 43.2%和44.3%,达到了差压铸造的力学性能指标。

实施例3

后转向节,A356合金,重2.8kg。浇注温度为710℃,模具材质H13钢,模 具初始温度为350℃,冷却方式为9路水冷与3路风冷组合。转向节构形及特征部 位如图1A所示。

参见图3所示的压力-时间曲线图,采用金属型低压铸造成型用结晶保压后顺序 增压方法制备铝合金后转向节铸件的步骤有:

步骤一,升液阶段;

在升液压力为16kPa、升液速度为2.0kPa/s的条件下,铝液沿升液管平稳上 升至铸型浇口处,并流入铸型中;

步骤二,充型阶段;

在充型压力为30kPa、充型速度为0.7kPa/s的条件下,铝液从浇口充入型腔, 直至型腔全部充满;

步骤三,结晶增压阶段;

铝液充满铸型后,快速增大结晶压力,在6s增压压力至95kPa;

步骤四,结晶保压阶段;

增压压力达到95kPa后,进入结晶保压阶段;

步骤五,结晶保压后顺序增压阶段;

在本发明中,改进的结晶保压顺序增压方式进行结晶保压处理,其压力-时间曲 线如图3所示。

(A)特征部位A在充型10s后开始凝固,此时开始以20kPa/s的速度增大 结晶保压压力至135kPa,然后保压到特征部位B开始凝固;

(B)特征部位B充型13s后开始凝固,此时开始以38kPa/s的速度增大结 晶保压压力,直到结晶保压压力到360kPa,然后进入保压阶段;

(C)特征部位D在充型完成后190s凝固结束,继续保压50s;

步骤六,卸压放气阶段;

经步骤五后,解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到 保温炉。

将实施例3制得的A356合金转向节铸件,经T6热处理后,采用Instron8801 型号拉伸试验机测试其抗拉强度、屈服强度和延伸率性能:抗拉强度、屈服强度和延 伸率分别达到350MPa、292MPa及13.1%,达到了差压铸造的力学性能指标。

收缩
  • QQ咨询

  • 在线咨询
  • 在线咨询
  • 在线咨询
  • 在线咨询
  • 电话咨询

  • 02886312233