专利名称: | 一种车内噪声预测的方法 | ||
专利名称(英文): | A method for predicting in-vehicle noise | ||
专利号: | CN201610079303.6 | 申请时间: | 20160204 |
公开号: | CN105740637A | 公开时间: | 20160706 |
申请人: | 北京航空航天大学 | ||
申请地址: | 100191 北京市海淀区学院路37号 | ||
发明人: | 邱志平; 许孟辉; 王晓军; 李云龙; 王冲; 胡永明; 仇翯辰; 陈贤佳; 郑宇宁 | ||
分类号: | G06F19/00 | 主分类号: | G06F19/00 |
代理机构: | 北京科迪生专利代理有限责任公司 11251 | 代理人: | 杨学明; 顾炜 |
摘要: | 本发明公开了一种车内噪声预测的方法,该方法根据逐维分析理论确定设计人员所关心的车内噪声响应的波动范围。首先,实现区间参数的标准化,在参考点处以区间参数每个维度上的平面切割车内噪声响应所在曲面,确定近似多项式函数的阶数,进一步确定数值积分点个数。其次,选择对应的数值积分点,计算在数值积分点处的车内噪声响应,确定近似多项式函数,进一步确定最大值点与最小值点。最后,组合形成最大值点向量和最小值点向量,确定车内噪声响应的波动范围。本发明考虑了工程领域普遍存在的不确定因素对车内噪声响应的影响,将传统车内噪声分析拓展为车内噪声区间分析,可以预估车内噪声响应的波动范围,符合工程领域实际需求,应用前景明朗。 | ||
摘要(英文): | The invention discloses a method of predicting noise in the vehicle, the method for design by Uygur analysis theory is determined according to the vehicle of interest in response to the fluctuation range of the noise. First of all, the standardization of the interval parameter, the interval parameter to the reference point in each dimension cutting the plane of the noise in the vehicle in response to the to the curved surface, is similar to the order of the polynomial function is determined, grade point average further determine the number of values. Secondly, to select a corresponding numerical grade point average, in the calculation of value in response to noise in the car grade point average place, determining an approximately polynomial function, further determination of the maximum value point and the minimum value. Finally, combined to form a maximum value and the minimum value of vector vector, noise in the vehicle are determined in response to the wave range. The invention takes into account the prevailing in the engineering field of the uncertainties in response to the impact of noise in the vehicle, in the traditional vehicle noise analysis of expanding to in-vehicle noise analysis, in the vehicle can be estimated in response to the fluctuation range of the noise, in accordance with the actual demand in the field, application prospects. |
1.一种车内噪声预测的方法,其特征在于,该方法包括以下步骤: 第一步:通过区间定量化方法将汽车车内噪声分析的相关不确定参数定量化,相关不确 定参数是设计人员通过灵敏度分析筛选确定的,记为区间参数向量pI,维度为n,并将所有 区间参数转化于标准区间[-1,1]内; 第二步:确定区间参数的参考点,即设计人员实际所应用的不确定参数的某个特定值, 选择中心点值向量pc,也可以选择为名义值向量pn或其他任意给定向量,通过参考点pc, 以区间参数每个维度上的平面切割车内噪声响应所在曲面; 第三步:基于第二步所得的第i(1≤i≤n)个维度上的截平面曲线,确定近似多项式函数 的阶数及数值积分点,以车内噪声的数值分析模型为黑箱计算数值积分点处车内噪声响应, 应用高斯-勒让德积分公式计算近似多项式函数的系数,进一步地,计算近似多项式函数的 导函数,确定其稳定点; 第四步:由第三步所得的关于第i个参数的稳定点及标准区间端点值-1和1形成关于第i 个参数的潜在最值点集合,基于该潜在最值点集合及第三步中的近似多项式函数计算关于第 i个参数的最大值点与最小值点,并最终将最大值点与最小值点转化为第i个参数的真实值, 即pi,max与pi,min; 第五步:针对第一步中所有区间参数,重复第三步与第四步的操作,获得区间参数向量 每个维度上的最大值点与最小值值点,并最终组合形成最大值点向量与最小值点向量,即 pmax与pmin; 第六步:以传统的车内噪声确定性数值分析模型为黑箱,分别计算在最大值点向量pmax与最小值点向量pmin处的车内噪声响应,最终得到车内噪声响应的波动范围或称为区间估 计。
2.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法将现有经典 的车内噪声确定性数值分析模型以黑箱形式参与车内噪声区间分析流程。
3.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法考虑了不确 定参数效应,不确定参数以区间模型定量化,将经典车内噪声确定性分析拓展为车内噪声区 间分析。
4.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法在参考点处 以区间参数每个维度上的平面逐维切割车内噪声响应所在曲面,并以勒让德多项式实现截平 面曲线的近似。
5.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法以逐维分析 的方式确定车内噪声响应在区间参数每个维度上的最大值点与最小值点,以此组合形成最终 的最大值点向量和最小值点向量,将车内噪声区间分析简化为2个经典的车内噪声确定性分 析过程。
6.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法可以对所有 区间参数并行计算。
7.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法可以对车内 不同位置不同频率下噪声响应实现并行计算。
1.一种车内噪声预测的方法,其特征在于,该方法包括以下步骤: 第一步:通过区间定量化方法将汽车车内噪声分析的相关不确定参数定量化,相关不确 定参数是设计人员通过灵敏度分析筛选确定的,记为区间参数向量pI,维度为n,并将所有 区间参数转化于标准区间[-1,1]内; 第二步:确定区间参数的参考点,即设计人员实际所应用的不确定参数的某个特定值, 选择中心点值向量pc,也可以选择为名义值向量pn或其他任意给定向量,通过参考点pc, 以区间参数每个维度上的平面切割车内噪声响应所在曲面; 第三步:基于第二步所得的第i(1≤i≤n)个维度上的截平面曲线,确定近似多项式函数 的阶数及数值积分点,以车内噪声的数值分析模型为黑箱计算数值积分点处车内噪声响应, 应用高斯-勒让德积分公式计算近似多项式函数的系数,进一步地,计算近似多项式函数的 导函数,确定其稳定点; 第四步:由第三步所得的关于第i个参数的稳定点及标准区间端点值-1和1形成关于第i 个参数的潜在最值点集合,基于该潜在最值点集合及第三步中的近似多项式函数计算关于第 i个参数的最大值点与最小值点,并最终将最大值点与最小值点转化为第i个参数的真实值, 即pi,max与pi,min; 第五步:针对第一步中所有区间参数,重复第三步与第四步的操作,获得区间参数向量 每个维度上的最大值点与最小值值点,并最终组合形成最大值点向量与最小值点向量,即 pmax与pmin; 第六步:以传统的车内噪声确定性数值分析模型为黑箱,分别计算在最大值点向量pmax与最小值点向量pmin处的车内噪声响应,最终得到车内噪声响应的波动范围或称为区间估 计。
2.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法将现有经典 的车内噪声确定性数值分析模型以黑箱形式参与车内噪声区间分析流程。
3.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法考虑了不确 定参数效应,不确定参数以区间模型定量化,将经典车内噪声确定性分析拓展为车内噪声区 间分析。
4.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法在参考点处 以区间参数每个维度上的平面逐维切割车内噪声响应所在曲面,并以勒让德多项式实现截平 面曲线的近似。
5.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法以逐维分析 的方式确定车内噪声响应在区间参数每个维度上的最大值点与最小值点,以此组合形成最终 的最大值点向量和最小值点向量,将车内噪声区间分析简化为2个经典的车内噪声确定性分 析过程。
6.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法可以对所有 区间参数并行计算。
7.根据权利要求1所述的一种车内噪声预测的方法,其特征在于,该方法可以对车内 不同位置不同频率下噪声响应实现并行计算。
翻译:技术领域
本发明涉及车内噪声测量的技术领域,具体涉及一种车内噪声预测的方法,适用于汽车 内部噪声的预测分析,并可拓展为室内声场或内部声场的噪声预测。
背景技术
汽车车内噪声是影响其乘坐舒适性的重要方面之一,高噪声既能损害乘员的身心健康, 又能导致驾驶员迅速疲劳,对汽车行驶安全构成了极大的威胁。随着道路状况的改善及车辆 振动平顺性研究成果的应用,车内噪声在评价车辆乘坐舒适性中起着越来越重要的作用。当 前,以降低车内噪声水平,改善车内声学环境,提高车辆乘坐舒适性为目标的研究业已成为 汽车领域的研究热点之一,而车内噪声的快速准确预测是必要的分析技术。
在汽车车内噪声分析过程中,不确定因素是普遍存在的,甚至是不可避免的。这些因素 可以归为“人、机、料、法、环”五个方面,如元件结构加工制造误差、材料质量和批次差异、 数值分析过程简化与假设、以及汽车服役或工作环境载荷等,可以根据工程领域实际需求及 灵敏度分析技术确定目标车辆噪声分析的关键影响因素。值得注意的是,汽车车内噪声分析 对于不确定因素的处理方式基本一致,因此本发明包括但不限于其所列的不确定因素影响下 的车内噪声预测分析。不确定因素定量化是进行不确定性分析的必要前提,基于概率与统计 理论的参数定量化方法需要大量统计数据,而由于试验条件等限制导致统计数据所拟合的参 数概率密度函数等精度有限。本发明限于以参数的区间定量化为基础的车内噪声预测分析, 在该领域内已有以摄动理论为主的分析方法。
发明内容
本发明要解决的技术问题是:克服已有方法在计算精度方面存在的过估计、欠估计及不 可预测估计的效应,克服已有方法计算效率低的不足,提供一种快速准确预测车内噪声响应 波动范围的方法。
本发明采用的技术方案是:一种车内噪声预测的方法,其实现步骤是:
第一步:通过区间定量化方法将汽车车内噪声分析的相关不确定参数(如设计人员通过 灵敏度分析筛选确定)定量化,包括结构参数、材料参数、载荷参数等,记为区间参数向量 pI,维度为n,并将所有区间参数转化于标准区间[-1,1]内。
第二步:确定区间参数的参考点,即设计人员实际所应用的不确定参数的某个特定值, 本发明选择中心点值向量pc,也可以选择为名义值向量pn或其他任意给定向量。通过参考 点pc,以区间参数每个维度上的平面切割车内噪声响应所在曲面。
第三步:基于第二步所得的第i(1≤i≤n)个维度上的截平面曲线,确定近似多项式函数 的阶数及数值积分点,以车内噪声的数值分析模型为黑箱计算数值积分点处车内噪声响应, 应用高斯-勒让德积分公式计算近似多项式函数的系数。进一步地,计算近似多项式函数的 导函数,确定其稳定点。
第四步:由第三步所得的关于第i个参数的稳定点及标准区间端点值-1和1形成关于第i 个参数的潜在最值点集合,基于该潜在最值点集合及第三步中的近似多项式函数计算关于第 i个参数的最大值点与最小值点,并最终将最大值点与最小值点转化为第i个参数的真实值, 即pi,max与pi,min。
第五步:针对第一步中所有区间参数,重复第三步与第四步的操作,获得区间参数向量 每个维度上的最大值点与最小值值点,并最终组合形成最大值点向量与最小值点向量,即 pmax与pmin。
第六步:以传统的车内噪声确定性数值分析模型为黑箱,分别计算在最大值点向量pmax与最小值点向量pmin处的车内噪声响应,最终得到车内噪声响应的波动范围(或称为区间估 计)。
其中,本发明将现有经典的车内噪声确定性数值分析模型,如图3~图5所示,以黑箱 形式参与车内噪声区间分析流程。
其中,本发明考虑了不确定参数效应,不确定参数以区间模型定量化,如图2所示,将 经典车内噪声确定性分析拓展为车内噪声区间分析。
其中,本发明在参考点处以区间参数每个维度上的平面逐维切割车内噪声响应所在曲 面,并以勒让德多项式实现截平面曲线的近似。
其中,本发明以逐维分析方式确定车内噪声响应在区间参数每个维度上的最大值点与最 小值点,组合形成最终的最大值点向量和最小值点向量,将车内噪声区间分析简化为2个经 典的车内噪声确定性分析过程。
其中,该方法可以对所有区间参数并行计算,对车内不同位置不同频率下噪声响应实现 并行计算。
本发明的原理在于:
如图1所示,本发明以经典噪声有限元数值分析模型为黑箱,基于不确定参数区间定量 化模型,以设计人员对区间参数的经验值为参考点,通常为区间参数中点值或名义值;将区 间参数标准化,以通过参考点的区间参数每个维度上的平面切割车内噪声响应所在曲面,利 用勒让德多项式近似截平面曲线;基于连续函数最值定理,通过近似多项式函数的导函数计 算其稳定点,与区间端点形成潜在最值点集合,并从中确定该维度上的最大值点与最小值点; 将该处理方式遍历区间参数所有维度,由所有维度上的最大值点组合形成最大值点向量,并 在该点处计算车内噪声响应的最大值,由所有维度上的最小值点组合形成最小值点向量,并 在该点处计算车内噪声响应的最小值。本发明考虑了工程领域普遍存在的不确定因素对车内 噪声响应的影响,将传统车内噪声分析拓展为车内噪声区间分析,可以预估车内噪声响应的 波动范围,符合工程领域实际需求,应用前景明朗。
本发明与现有技术相比的优点在于:
(1)、车内噪声预测方式科学合理:本发明考虑了汽车结构与其服役环境等不可避免存 在的不确定因素对车内噪声预测的影响,符合工程领域需求;
(2)、易于工程应用推广:本发明以车内噪声经典有限元数值分析模型为黑箱,易于实 现与成熟商业分析软件的集成;
(3)、精度高:本发明克服了基于摄动理论的噪声预测方法所存在的不可预知效应;
(4)、效率高:本发明克服了基于子区间分析方法的噪声预测方法计算效率低的不足。
附图说明
图1为车内噪声预测基本原理图;
图2为车内噪声区间分析流程图;
图3为车内噪声数值分析有限元模型;
图4为结构有限元模型;
图5为声腔有限元模型。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
本发明基于逐维分析理论提出了一种快速准确的汽车车内噪声预测的方法,如图2所示, 其具体实施步骤是:
第一步:如图2所示,区间定量化方法所得的区间参数向量为pI,区间参数下界向量为 pL,区间参数上界向量为pU,区间参数中点值向量pc可以计算为:
区间参数半径值向量可以计算为:
则区间向量pI可以表示为:
pI=pc+proeI(3)
其中eI为标准化区间向量,即每个元素均为[-1,1],符号ο表示向量对应元素相乘。
第二步:如图2所示,确定参考点为区间中心点向量pc或名义值向量pn。通过参考点pc, 以区间参数的第i个维度上的平面切割车内噪声响应所在曲面,所得的截平面曲线方程可以 表示为:
其中:
第三步:确定勒让德近似多项式函数的阶数为R,数值积分点由S阶勒让德多项式零点 确定,且满足关系:
S>2R(6)
勒让德多项式表示为:
满足如下递归关系:
以式(7)所表示的勒让德多项式为基底,近似多项式函数Lapp可以表示为:
其中Lr(x)根据式(7)和式(8)确定,系数cr由下式计算:
其中xj(j=1,2,...,S)为数值积分点。xj(j=1,2,...,S)与Aj(j=1,2,...,S)可以根据S的取 值参考表1。
表1数值积分点与系数取值表
本发明在此列出前5阶勒让德多项式,即:
根据式(9)计算近似多项式函数的导函数的稳定点,有:
根据勒让德多项式的定义域修改稳定点为:
其中Im表示虚数的虚部,Re表示虚数的实部。
第四步,根据连续函数的最值定理,由式(13)及标准区间[-1,1]的端点形成潜在最值点集 合,表示为:
xextreme={x1,x2,...,xR-1,-1,1}(14)
并基于潜在最值点集合确定关于第i个区间参数的最大值点xi,max和最小值点xi,min,
将最大值点和最小值点分别转化为区间参数的实际值,即:
第五步,如图2所示,对第j(j≠i)个区间参数采用与第三步与第四步相同的操作,计 算获得第j个区间参数的最大值点pj,max和最小值点pj,min。进一步地,遍历所有区间参数, 最终组合形成最大值点向量和最小值点向量:
第六步:以传统的车内噪声数值分析的有限元模型,如图3~图5所示,为黑箱,分别 计算在最大值点向量pmax与最小值点向量pmin处的车内噪声响应,最终得到车内噪声响应最 大值和最小值以确定其波动范围。值得注意的是,该步骤可以并行计算确定车内不同位置不 同频率的噪声响应。