云辅助自动驾驶方法及系统(发明专利)

专利号:CN201510967349.7

申请人:福州华鹰重工机械有限公司

  • 公开号:CN105446338A
  • 申请日期:20151221
  • 公开日期:20160330
专利名称: 云辅助自动驾驶方法及系统
专利名称(英文): Cloud auxiliary automatic driving method and system
专利号: CN201510967349.7 申请时间: 20151221
公开号: CN105446338A 公开时间: 20160330
申请人: 福州华鹰重工机械有限公司
申请地址: 350008 福建省福州市仓山区盖山镇照屿村100号
发明人: 潘晨劲; 赵江宜
分类号: G05D1/02 主分类号: G05D1/02
代理机构: 福州市景弘专利代理事务所(普通合伙) 35219 代理人: 林祥翔; 吕元辉
摘要: 一种云辅助自动驾驶方法及系统,其中方法包括如下步骤,云端向汽车端和路边静态传感器发送数据请求;汽车端和路边静态传感器根据数据请求发送传感器信息;云端接收传感器模块与路边静态传感器发送的传感器信息,根据所述传感器信息规划分析得到规划分析结果,将规划分析结果发送至汽车端;汽车端接收规划分析结果,根据规划分析结果及传感器信息进行路径规划得到路径规划结果,再根据路径规划结果控制车辆的行驶。本发明通过设计路边静态传感器和车载传感器模块的信息共享,云端统筹分析可通行路径等多功能辅助,供当前车进行参考。提高了可用信息量,因而进一步提高了自动驾驶的安全性。
摘要(英文): A cloud auxiliary automatic driving method and system, wherein the method comprises the following steps, the clouds to automobile end and road-side static sensor sends a data request; automobile end and road-side static sensor, according to the data request to send sensor information; clouds receiving sensor module and roadside static sensor sends the sensor information, based on the sensor information for planning planning is analyzed to obtain the results of the analysis, the planning analysis results are sent to the vehicle end; automobile end receives the planning the results of the analysis, according to the planning of the results of the analysis and sensor information for path planning the route planning results, according to the path planning results control the ride of the vehicle. The invention designs a roadside static sensor and vehicle-mounted sensor module information sharing, clouds co-ordination analysis can pass through the multifunctional auxiliary paths, and, for reference of the present vehicle. The information can be used, thereby further improving the safety of the automatic drive.
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
  • 商标交易流程
一种云辅助自动驾驶方法,其特征在于,包括如下步骤,云端向汽车端和路边静态传感器发送数据请求;汽车端和路边静态传感器根据数据请求发送传感器信息;云端接收传感器模块与路边静态传感器发送的传感器信息,根据所述传感器信息规划分析得到规划分析结果,将规划分析结果发送至汽车端;汽车端接收规划分析结果,根据规划分析结果及传感器信息进行路径规划得到路径规划结果,再根据路径规划结果控制车辆的行驶。

1.一种云辅助自动驾驶方法,其特征在于,包括如下步骤, 云端向汽车端和路边静态传感器发送数据请求; 汽车端和路边静态传感器根据数据请求发送传感器信息; 云端接收传感器模块与路边静态传感器发送的传感器信息,根据所述传 感器信息规划分析得到规划分析结果,将规划分析结果发送至汽车端; 汽车端接收规划分析结果,根据规划分析结果及传感器信息进行路径规 划得到路径规划结果,再根据路径规划结果控制车辆的行驶。

2.根据权利要求1所述的自动驾驶方法,其特征在于,所述传感器信息 包括以八叉树为结构的数据集,所述八叉树的节点包括属性:被占用、未占 用或未知。

3.根据权利要求2所述的自动驾驶方法,其特征在于,所述数据请求包 括分辨率信息。

4.根据权利要求2所述的自动驾驶方法,其特征在于,所述传感器信息 的编码过程包括步骤, 随机选择第一叶节点,将从根节点到所述第一叶节点的路径信息记录到 第一传感器信息中,若所述第一传感器信息大小未超过数据包的容量,再将 所述第一叶节点的父节点下所有子节点的路径信息记录到第一传感器信息, 递归记录已记录父节点的上一级父节点下所有子节点的路径信息到第一传感 器信息,直到超出数据包容量。

5.一种云辅助自动驾驶系统,其特征在于,包括云端、汽车端、路边静 态传感器; 所述云端包括请求模块、云规划模块、云发送模块和云接收模块; 所述汽车端包括汽车接收模块、传感器模块、汽车规划模块、控制模块; 所述请求模块用于向传感器模块和路边静态传感器发送数据请求,所述 云接收模块用于接收传感器模块与路边静态传感器发送的传感器信息,所述 云规划模块用于根据所述传感器信息规划分析得到规划分析结果,所述云发 送模块用于将规划分析结果发送至汽车端; 所述汽车接收模块用于接收所述数据请求、规划分析结果;所述传感器 模块用于根据数据请求发送传感器信息,所述汽车规划模块用于根据规划分 析结果及传感器信息进行路径规划得到路径规划结果,所述控制模块用于根 据路径规划结果控制车辆的行驶; 所述路边静态传感器用于根据所述数据请求发送传感器信息。

6.根据权利要求5所述的自动驾驶系统,其特征在于,所述传感器信息 包括以八叉树为结构的数据集,所述八叉树的节点包括属性:被占用、未占 用或未知。

7.根据权利要求6所述的自动驾驶系统,其特征在于,所述数据请求包 括分辨率信息。

8.根据权利要求7所述的自动驾驶系统,其特征在于,所述传感器模块、 路边静态传感器还用于: 随机选择第一叶节点,将从根节点到所述第一叶节点的路径信息记录到 第一传感器信息中,若所述第一传感器信息大小未超过数据包的容量,再将 所述第一叶节点的父节点下所有子节点的路径信息记录到第一传感器信息, 递归记录已记录父节点的上一级父节点下所有子节点的路径信息到第一传感 器信息,直到超出数据包容量。

PDF文件加载中,请耐心等待!
一种云辅助自动驾驶方法,其特征在于,包括如下步骤,云端向汽车端和路边静态传感器发送数据请求;汽车端和路边静态传感器根据数据请求发送传感器信息;云端接收传感器模块与路边静态传感器发送的传感器信息,根据所述传感器信息规划分析得到规划分析结果,将规划分析结果发送至汽车端;汽车端接收规划分析结果,根据规划分析结果及传感器信息进行路径规划得到路径规划结果,再根据路径规划结果控制车辆的行驶。
原文:

1.一种云辅助自动驾驶方法,其特征在于,包括如下步骤, 云端向汽车端和路边静态传感器发送数据请求; 汽车端和路边静态传感器根据数据请求发送传感器信息; 云端接收传感器模块与路边静态传感器发送的传感器信息,根据所述传 感器信息规划分析得到规划分析结果,将规划分析结果发送至汽车端; 汽车端接收规划分析结果,根据规划分析结果及传感器信息进行路径规 划得到路径规划结果,再根据路径规划结果控制车辆的行驶。

2.根据权利要求1所述的自动驾驶方法,其特征在于,所述传感器信息 包括以八叉树为结构的数据集,所述八叉树的节点包括属性:被占用、未占 用或未知。

3.根据权利要求2所述的自动驾驶方法,其特征在于,所述数据请求包 括分辨率信息。

4.根据权利要求2所述的自动驾驶方法,其特征在于,所述传感器信息 的编码过程包括步骤, 随机选择第一叶节点,将从根节点到所述第一叶节点的路径信息记录到 第一传感器信息中,若所述第一传感器信息大小未超过数据包的容量,再将 所述第一叶节点的父节点下所有子节点的路径信息记录到第一传感器信息, 递归记录已记录父节点的上一级父节点下所有子节点的路径信息到第一传感 器信息,直到超出数据包容量。

5.一种云辅助自动驾驶系统,其特征在于,包括云端、汽车端、路边静 态传感器; 所述云端包括请求模块、云规划模块、云发送模块和云接收模块; 所述汽车端包括汽车接收模块、传感器模块、汽车规划模块、控制模块; 所述请求模块用于向传感器模块和路边静态传感器发送数据请求,所述 云接收模块用于接收传感器模块与路边静态传感器发送的传感器信息,所述 云规划模块用于根据所述传感器信息规划分析得到规划分析结果,所述云发 送模块用于将规划分析结果发送至汽车端; 所述汽车接收模块用于接收所述数据请求、规划分析结果;所述传感器 模块用于根据数据请求发送传感器信息,所述汽车规划模块用于根据规划分 析结果及传感器信息进行路径规划得到路径规划结果,所述控制模块用于根 据路径规划结果控制车辆的行驶; 所述路边静态传感器用于根据所述数据请求发送传感器信息。

6.根据权利要求5所述的自动驾驶系统,其特征在于,所述传感器信息 包括以八叉树为结构的数据集,所述八叉树的节点包括属性:被占用、未占 用或未知。

7.根据权利要求6所述的自动驾驶系统,其特征在于,所述数据请求包 括分辨率信息。

8.根据权利要求7所述的自动驾驶系统,其特征在于,所述传感器模块、 路边静态传感器还用于: 随机选择第一叶节点,将从根节点到所述第一叶节点的路径信息记录到 第一传感器信息中,若所述第一传感器信息大小未超过数据包的容量,再将 所述第一叶节点的父节点下所有子节点的路径信息记录到第一传感器信息, 递归记录已记录父节点的上一级父节点下所有子节点的路径信息到第一传感 器信息,直到超出数据包容量。

翻译:
云辅助自动驾驶方法及系统

技术领域

本发明涉及自动驾驶领域,尤其涉及一种云辅助的自动驾驶方法及系统。

背景技术

无人驾驶技术日趋成熟,无人车或智能车在很多情况下已经能够满足自 主导航的需要,然而无人车终究是机器,需要倚仗传感器信息进行判断,分 析。对于一些复杂路段,如施工、下雨等情况,需要分析的情况进一步增多, 仅仅依靠车载传感器进行采集、判断、驾驶是不够的,不能够满足安全性的 要求。

发明内容

为此,需要提供一种能够提供更多传感器信息参考的驾驶方法,具体的, 通过多传感器及云端分析提供传感器信息共享和路径共享,以提高无人车自 动驾驶的安全性。

为实现上述目的,发明人提供了一种云辅助自动驾驶方法,包括如下步 骤,

云端向汽车端和路边静态传感器发送数据请求;

汽车端和路边静态传感器根据数据请求发送传感器信息;

云端接收传感器模块与路边静态传感器发送的传感器信息,根据所述传 感器信息规划分析得到规划分析结果,将规划分析结果发送至汽车端;

汽车端接收规划分析结果,根据规划分析结果及传感器信息进行路径规 划得到路径规划结果,再根据路径规划结果控制车辆的行驶。

进一步地,所述传感器信息包括以八叉树为结构的数据集,所述八叉树 的节点包括属性:被占用、未占用或未知。

具体地,所述数据请求包括分辨率信息。

进一步地,所述传感器信息的编码过程包括步骤,

随机选择第一叶节点,将从根节点到所述第一叶节点的路径信息记录到 第一传感器信息中,若所述第一传感器信息大小未超过数据包的容量,再将 所述第一叶节点的父节点下所有子节点的路径信息记录到第一传感器信息, 递归记录已记录父节点的上一级父节点下所有子节点的路径信息到第一传感 器信息,直到超出数据包容量。

一种云辅助自动驾驶系统,包括云端、汽车端、路边静态传感器;

所述云端包括请求模块、云规划模块、云发送模块和云接收模块;

所述汽车端包括汽车接收模块、传感器模块、汽车规划模块、控制模块;

所述请求模块用于向传感器模块和路边静态传感器发送数据请求,所述 云接收模块用于接收传感器模块与路边静态传感器发送的传感器信息,所述 云规划模块用于根据所述传感器信息规划分析得到规划分析结果,所述云发 送模块用于将规划分析结果发送至汽车端;

所述汽车接收模块用于接收所述数据请求、规划分析结果;所述传感器 模块用于根据数据请求发送传感器信息,所述汽车规划模块用于根据规划分 析结果及传感器信息进行路径规划得到路径规划结果,所述控制模块用于根 据路径规划结果控制车辆的行驶;

所述路边静态传感器用于根据所述数据请求发送传感器信息。

进一步地,所述传感器信息包括以八叉树为结构的数据集,所述八叉树 的节点包括属性:被占用、未占用或未知。

具体地,所述数据请求包括分辨率信息。

进一步地,所述传感器模块、路边静态传感器还用于:

随机选择第一叶节点,将从根节点到所述第一叶节点的路径信息记录到 第一传感器信息中,若所述第一传感器信息大小未超过数据包的容量,再将 所述第一叶节点的父节点下所有子节点的路径信息记录到第一传感器信息, 递归记录已记录父节点的上一级父节点下所有子节点的路径信息到第一传感 器信息,直到超出数据包容量。

区别于现有技术,上述技术方案通过设计路边静态传感器和车载传感器 模块的信息共享,云端统筹分析可通行路径等多功能辅助,供当前车进行参 考。提高了可用信息量,因而进一步提高了自动驾驶的安全性。

附图说明

图1为本发明具体实施方式所述的云辅助自动驾驶方法方法流程图;

图2为本发明具体实施方式所述的车辆架构示意图;

图3为本发明具体实施方式所述的云系统示意图;

图4为本发明具体实施方式所述的八叉树表示法示意图;

图5为本发明具体实施方式所述的云辅助自动驾驶系统模块图

附图标记说明:

50、云端;

500、请求模块;

502、云规划模块;

504、云发送模块;

506、云接收模块;

52、汽车端;

520、传感器模块;

524、汽车规划模块;

526、控制模块;

54、路边静态传感器。

具体实施方式

为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下 结合具体实施例并配合附图详予说明。

请参阅图1,为一种云辅助自动驾驶方法流程图,本实施例中方法,包括 如下步骤,

S100云端向汽车端和路边静态传感器发送数据请求;

S102汽车端和路边静态传感器根据数据请求发送传感器信息;

S104云端接收传感器模块与路边静态传感器发送的传感器信息,根据所 述传感器信息规划分析得到规划分析结果,将规划分析结果发送至汽车端;

S106汽车端接收规划分析结果,根据规划分析结果及传感器信息进行路 径规划得到路径规划结果,再根据路径规划结果控制车辆的行驶。

本方案方案使用云从自动驾驶汽车的传感器和路边静态传感器获得信息, 用来帮助自动驾驶汽车规划他们的轨迹。采用云辅助可以使自动驾驶车辆规 划更安全更高效的路径。云辅助的优势在于可以同时向自动驾驶汽车和路边 静态设备请求传感器信息,其中汽车端可以对应多个同时在路上行驶的车辆, 在某些实施例中,车辆还会对行驶轨迹进行共享。云记录所有车辆的当前轨 迹、聚合了所有这些信息并且向区域内的每辆自动驾驶汽车传达包括障碍、 盲点和备用路径在内的信息。

云访问由多个自动驾驶车辆和路边静态传感器组成的更大的传感器数 据池,从而可以更安全、更高效的规划路径。因此,云访问的传感器信息可 能是某些自动驾驶车辆的盲点也可能是车载传感器范围以外的信息。因此, 云可以帮助自动驾驶车辆预测不能直接从自动驾驶车辆自身上的传感器检测 到的障碍,从而做出更明智的决策。此外,由于云拥有更广范围的交通信息 和突发事件的信息(如:施工或者事故等),因此可以使自动驾驶车辆规划更有 效的路径。通过上述方法,达到了提高自动驾驶可参考信息量的效果,提高 了无人驾驶的安全性。

在另一些实施例中,为了成功地导航,自动驾驶汽车依靠车载传感器提 供描述他们所处环境的传感器信息,比如使用激光扫描仪和超声波测距仪等 提供准确的测距信息来描述车辆周围障碍物的距离,或者额外使用摄像头和 光线传感器来增加信息量。

自动驾驶汽车上的操纵系统提供了一个“发布/订阅”架构,,其中,主题 可以被一个或多个模块订阅,而模块(如激光测距仪)通过主题发布信息。 自动驾驶汽车的架构如图2所示,图中各个模块的功能如下文所述,现有技 术均可以实现,统筹在本架构中有助于更好地实现云辅助自动驾驶方法或系 统的完成。

传感器模块:每个连接到一个自动驾驶汽车的传感器都有一个关联的模 块,把原始传感器信息转换成通用格式的数据。最常用的格式是三维点云, 它提供了一组由障碍物表面点的三维坐标组成的集合,再加上被采集时间的 信息后,传感器信息会发布出去。

路径规划模块:路径规划模块从传感器模块订阅信息,建立一个详细的 全局地图。它使用这张地图来计算一个让车到达目的地的无障碍路径。规划 模块细分为五个子模块:

感知模块:感知模块从传感器模块订阅三维点云信息,并使用障碍检测 算法来识别围绕车辆参照系的障碍。然后,该模块发布的一个这些障碍物的 地图。

定位模块:定位模块发布车辆在全局地图中的当前位置。该模块通常通 过全球定位系统、里程计和其他更高级传感器的组合使用,可以使精度小于 几厘米。

绘图模块:绘图模块,分别从感知模块和定位模块中订阅障碍物地图和 车辆的当前位置。它发布一个包含所有障碍物位置的全局地图。

规划模块:规划模块订阅从绘图模块得到障碍物的全局地图和车辆的当 前位置,并发布一个为车辆导航的无障碍路径。

应急模块:应急模块订阅障碍物的地图,并且检测地图上意想不到的变 化,这些变化包括会导致妨碍车辆前行路径的新障碍物(例如,一个行人突 然过马路)。根据障碍物的位置,它可以更新车辆的轨迹路径从而避开障碍物 或完全停止车辆。

控制模块:控制模块订阅汽车的计划路径,并向汽车发出转向、加速和 换档命令,从而使车辆遵循计划的路径。

在图3所示的实施例中,介绍了一种云系统,云端从自动驾驶汽车和路 边静态传感器中获取传感信息,然而,传感器生成的高速实时数据流(通常 在Gb/s)无法全部在自动驾驶汽车有限的无线带宽中传输,只能根据信息的 重要性进行选择性传输,因此只从周围驾驶环境中选择重要的区域,通过云 请求更高分辨率的信息,非重要区域请求低分辨率的信息。云在推断环境中 不同区域的重要性时会考虑:(1)来自这些区域的可用低分辨率信息;(2) 车辆当前的路径和位置;(3)汽车盲点的位置。

云系统的请求模块通过整合和分析由八叉树表示的各个传感器回传的信 息,生成不同区域特定分辨率的数据请求,向传感器发出这些数据请求。请 求会被优先发送到靠近当前车辆位置、接近当前车辆轨迹或车辆盲点区域的 其他自动驾驶汽车和路边静态传感器。

规划模块汇总从各自动驾驶汽车获得的传感器信息以及通过接收器模块 得到的路边静态传感器信息,同时还记录当前所有车辆的轨迹。规划模块分 析已经得到的汇总的传感器信息,来检测可能会阻碍当前任何车辆的障碍。 如果存在障碍和可用的备用路径,则通过发送模块传递给每一个车辆。

在每辆自动驾驶汽车上,接收模块记录请求,并指示发送者传送已请求 区域合适分辨率的传感器信息。接收模块也会提醒规划模块关于障碍物或云 上报的备用轨迹的信息。发送模块传送各种被请求区域的传感器信息,传送 的信息数量正比于从云中接收到的这些区域的请求数量,发送模块也传输车 辆的当前位置和轨道。

在某些具体的实施例中,传感器信息包括以八叉树为结构的数据集,所 述八叉树的节点包括属性:被占用、未占用或未知。数据请求又包括分辨率 信息。关于分辨率的定义在下文中说明,传感器信息的编码方法又具体包括 步骤,随机选择第一叶节点,将从根节点到所述第一叶节点的路径信息记录 到第一传感器信息中,若所述第一传感器信息大小未超过数据包的容量,再 将所述第一叶节点的父节点下所有子节点的路径信息记录到第一传感器信息, 递归记录已记录父节点的上一级父节点下所有子节点的路径信息到第一传感 器信息,直到超出数据包容量。下面用三组实施例进行说明:

实施例1利用八叉树实现环境区域命名

利用八叉树来标识和命名在环境中的区域:将世界递归地划分成多维数 据集,开始于一个车辆已知边界的整个环境的数据集。每个多维数据集然后 递归地分为八个小的多维数据集。维护递归结构的八叉树,每个八叉树中的 节点代表一个多维数据集,并且该节点下的子树代表了该数据集的递归划分, 这样可以为坏境中不同位置的区域命名。八叉树中的每个节点(即每个区域) 给定了一个全局唯一标识符id,来区分不同的区域。

八叉树数据结构也可以用来表示传感器信息(即三维点云)。八叉树中的每 个节点(即每个区域)具有以下属性之一:(1)被占用的,如果点云中有任意点 在相应的多维数据集中(即,多维数据集中有一些物体,所以汽车不应该从 中驾驶通过);(2)未占用的,如果这个区域没有点(即,多维数据集是空的, 因此汽车可以从中驾驶通过);(3)未知的,如果这个区域没有足够的传感器 信息(即,多维数据集中可能有一些对象,但这些都没有被传感器检测到)。 我们注意到,如果任意子节点被占用,则父节点是被占用的。只有当所有的 子节点都是已知的和未占用的,则父节点是未占用的。如果没有子节点是被 占用的且至少有一个是未知的,则父节点是未知的。通过上述结构,使得三 维区域中每个区域都有节点属性,便于编码、分割、传输、提高了本发明方 法的实用性。

实施例2云如何获得不同分辨率的区域信息

八叉树数据结构提供了一种查询各个区域不同分辨率信息的机制。八叉 树中更深层次的信息提供区域更高分辨率的信息,上一层的信息提供同一区 域的一个低分辨率的信息。因此,一个区域的请求会表示成一个二元数组(id, res),其中id表示区域的位置,res则表示被请求区域的分辨率(深度)。自动 驾驶汽车的传感器信息使用八叉树数据结构来表示以及回复数据请求,数据 回复包括八叉树节点id下深度为res的子树节点的编码。通过对数据请求添 加分辨率信息,使得重要的区域被精细地描述,不重要的地方节省数据空间, 提高了本发明方法的效率。

实施例3信息丢包可恢复

向云端传输的传感器信息会受丢包影响,丢失一个由八叉树编码的数据 包,常常会破坏所有存储在八叉树上的信息。标准的八叉树编码技术按照如 下步骤进行:八叉树的每个节点表示成一个8元组,分别表示其子节点的被 占用情况;编码是通过自顶向下和广度优先遍历并读出相应的元组。根节点 总是假定为占用,对于每个节点,它的被占用和未知的子节点会被递归地编 码。未被占用的节点中,没有信息会被编码,因为相应的区域被假定成完全 没有被占用。此外,那些子节点都是被占用或未知的节点,因此会被一个特 殊的8元组完成编码(所有条目分别被标识成被占用或者未知),并且不会被 进一步编码。在接收模块上,译码器可以通过与编码器一样的遍历规则,如 实地恢复八叉树。

以上标准的八叉树编码存在问题:八叉树中一个节点对应一个字节,描 述了它的子节点的数量和位置,即使只是丢失了八叉树中的单个字节也会破 坏该字节下的所有数据,这个字节的丢失会破坏整个子树下的节点。例如, 图4中八叉树的第一个字节的丢失,会破坏整个八叉树,这是因为描述根上 子节点位置的信息丢失了。

采用改进的八叉树编码解决以上问题,确保每个通过发送器发送的数据 包是独立的且独立于其他数据包。随机选择从八叉树的根节点开始的子树, 且它们的编码正好放在一个数据包中。要选择这样的子树,要从八叉树中随 机选择一个叶节点l,通过包含从根到叶子节点的路径信息来创建数据包。这 个数据包还可以包含叶子节点l的父节点P(l)下的所有子节点信息,只要没有 超过一个数据包的容量,继续递归地包含父节点P(P(l))下的所有子节点。这 个递归过程结束时将得到一个子树,从这个子树中的所有节点到根的路径是 已知的。这可以确保每个数据包可以独立于其他数据包被重建。此外,自底 向上的编码过程确保数据包的最小重叠,从而整个八叉树的编码所需要的数 据包更少。

除了丢包可恢复,改进的八叉树编码方案还有令人满意的特点:(1)由 于与区域的子树大小成线性关系,所以它的计算很有效率;(2)收到的来自 不同车辆探测的相同区域的数据包具有最小的重叠,这是由于随机化过程可 以确保在任何时候,它们传递的是该区域八叉树的不同部分;(3)支持非均 匀的差错保护,因为传播的子树包含所有节点到该区域根节点的路径,树的 高层顶点比低层顶点有更小的丢包,所以,丢包通常会导致分辨率的损失, 而不是整个信息的丢失。通过上述编码步骤设计,达到了提高传输效率的效 果。

在某些具体的实施例中,自动驾驶汽车的操作系统在Ubuntu11.04版本上 运行,处理的环境是一个包含80个区域的全局地图,并且使用WiFi无线网 络连接到云,订阅包含操作系统的点云格式传感器信息的多个主题。系统追 踪云发出的请求消息,然后使用UDP数据包将相应的传感器信息传输至云。 车和云的路径规划模块可以使用快速轨道交通算法。

一种云辅助自动驾驶系统,如图5所示,包括云端50、汽车端52、路边 静态传感器54;

所述云端50包括请求模块500、云规划模块502、云发送模块504和云 接收模块506;

所述汽车端52包括汽车接收模块520、传感器模块522、汽车规划模块 524、控制模块526;

所述请求模块500用于向传感器模块522和路边静态传感器54发送数据 请求,所述云接收模块506用于接收传感器模块与路边静态传感器发送的传 感器信息,所述云规划模块502用于根据所述传感器信息规划分析得到规划 分析结果,所述云发送模块504用于将规划分析结果发送至汽车端;

所述汽车接收模块520用于接收所述数据请求、规划分析结果;所述传 感器模块522用于根据数据请求发送传感器信息,所述汽车规划模块524用 于根据规划分析结果及传感器信息进行路径规划得到路径规划结果,所述控 制模块526用于根据路径规划结果控制车辆的行驶;

所述路边静态传感器54用于根据所述数据请求发送传感器信息。

进一步地,所述传感器信息包括以八叉树为结构的数据集,所述八叉树 的节点包括属性:被占用、未占用或未知。

具体地,所述数据请求包括分辨率信息。

进一步地,所述传感器模块522、路边静态传感器54还用于:

随机选择第一叶节点,将从根节点到所述第一叶节点的路径信息记录到 第一传感器信息中,若所述第一传感器信息大小未超过数据包的容量,再将 所述第一叶节点的父节点下所有子节点的路径信息记录到第一传感器信息, 递归记录已记录父节点的上一级父节点下所有子节点的路径信息到第一传感 器信息,直到超出数据包容量。

上述系统模块设计通过设计路边静态传感器和车载传感器模块的信息共 享,云端统筹分析可通行路径等多功能辅助,供当前车进行参考。提高了可 用信息量,因而进一步提高了自动驾驶的安全性。

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来 将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示 这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、 “包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系 列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没 有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设 备所固有的要素。在没有更多限制的情况下,由语句“包括……”或“包含……” 限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中 还存在另外的要素。此外,在本文中,“大于”、“小于”、“超过”等理解为不 包括本数;“以上”、“以下”、“以内”等理解为包括本数。

本领域内的技术人员应明白,上述各实施例可提供为方法、装置、或计 算机程序产品。这些实施例可采用完全硬件实施例、完全软件实施例、或结 合软件和硬件方面的实施例的形式。上述各实施例涉及的方法中的全部或部 分步骤可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算 机设备可读取的存储介质中,用于执行上述各实施例方法所述的全部或部分 步骤。所述计算机设备,包括但不限于:个人计算机、服务器、通用计算机、 专用计算机、网络设备、嵌入式设备、可编程设备、智能移动终端、智能家 居设备、穿戴式智能设备、车载智能设备等;所述的存储介质,包括但不限 于:RAM、ROM、磁碟、磁带、光盘、闪存、U盘、移动硬盘、存储卡、记 忆棒、网络服务器存储、网络云存储等。

上述各实施例是参照根据实施例所述的方法、设备(系统)、和计算机程序 产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程 图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流 程和/或方框的结合。可提供这些计算机程序指令到计算机设备的处理器以 产生一个机器,使得通过计算机设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的 装置。

这些计算机程序指令也可存储在能引导计算机设备以特定方式工作的计 算机设备可读存储器中,使得存储在该计算机设备可读存储器中的指令产生 包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/ 或方框图一个方框或多个方框中指定的功能。

这些计算机程序指令也可装载到计算机设备上,使得在计算机设备上执 行一系列操作步骤以产生计算机实现的处理,从而在计算机设备上执行的指 令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个 方框中指定的功能的步骤。

尽管已经对上述各实施例进行了描述,但本领域内的技术人员一旦得知 了基本创造性概念,则可对这些实施例做出另外的变更和修改,所以以上所 述仅为本发明的实施例,并非因此限制本发明的专利保护范围,凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用 在其他相关的技术领域,均同理包括在本发明的专利保护范围之内。

收缩
  • QQ咨询

  • 在线咨询
  • 在线咨询
  • 在线咨询
  • 在线咨询
  • 电话咨询

  • 02886312233