专利名称: | 基于Mamdani算法的停车诱导决策方法 | ||
专利名称(英文): | Parking guidance of the algorithm based on Mamdani decision-making method | ||
专利号: | CN201510782673.1 | 申请时间: | 20151116 |
公开号: | CN105447116A | 公开时间: | 20160330 |
申请人: | 徐州工业职业技术学院 | ||
申请地址: | 221000 江苏省徐州市鼓楼区襄王路1号 | ||
发明人: | 宋培森 | ||
分类号: | G06F17/30; G06Q50/26 | 主分类号: | G06F17/30 |
代理机构: | 徐州市三联专利事务所 32220 | 代理人: | 朱海东 |
摘要: | 本发明公开了一种全新的面向服务本体的诱导停车决策方法,涉及模糊算法控制的领域。该方法是将自然语言或者是个人习惯的非量化数据通过建立隶属函数、模糊化、模糊规则库的处理后,再经过反模糊化过程,得到最终的控制结果信息,进而可以顺利的引导顾客泊车。决策算法其亮点为,突破了传统的坐而待毙的停车方式,一方面可以主动分析泊车者的自然语言,另一方面也可以通过系统历史后台数据仓库分析个人习惯,最终可以合理的安排停车场的有限资源,配合系统的自学习功能,可以使停车场管理智能化,具有很高的现实意义和实用价值。 | ||
摘要(英文): | The invention discloses a new service-oriented method for inducing parking decision-making of the main body, relates to the field of fuzzy algorithm control. The method is the natural language or personal habits non-quantification data through the establishment of the membership functions, fuzzy, after treatment of a fuzzy rule base, then process counter-fuzzy, obtain a final control result information, and then can be smoothly guide customers to the parking. The decision-making algorithm its bright spot, break through the traditional parking mode sits waits for death, on the one hand can be actively analyzing parking natural language, on the other hand, it also can be through the system historical background data warehouse analyzing personal habits, can eventually be rational arrangements of the limited resources of the car, with the self-learning function of the system, the intelligent management carparks, has very high practical significance and utility value. |
1.一种基于Mamdani算法控制的停车诱导决策方法,包括用于输入车辆种类的模糊化 接口1和用于输入停车频率的模糊化接口2,其特征在于,包括以下步骤: S1:按照停车场电梯终点和特征,将电梯分为四类:直达商场的商场直梯,悠闲到达商 场的扶手电梯,直达电影院的电影院直梯和直达写字楼的写字楼直梯; 按照上月车辆平均每次停留时长,将停车场内的停车类型Type分为四种,即模糊化接 口1的输入:时长为0~1小时定义为“短暂停留”,时长为1~2小时定义为“购物”,时长为2~ 3小时定义为“看电影或吃饭”,时长为3~24小时定义为“工作”; 按照上月车辆停车次数Times,划分停车频率Frequency,停车次数为0~30次的,记其 停车频率为停车次数,即Frequency=Times;停车次数为31~40次的,记其停车频率为31; 停车次数大于40次的,记其停车频率为32; 停车类型和停车频率均记录在系统后台数据仓库; S2:车牌识别与语音输入甄别,用户可以在停车场入口识别车牌时,说出停车目的,系 统自动甄别停车类型,停车类型为“短暂停留”的,模糊化接口1输入Type=-1;停车类型为 “购物”的,模糊化接口1输入Type=0;停车类型为“看电影或吃饭”的,模糊化接口1输入 Type=1;停车类型为“工作”的,模糊化接口1输入Type=1; 根据用户语音信息输入频率程度,识别语音信息中的关键词Keyword,利用语音识别技 术匹配5种不同的程度化词语,分别为第一次Firsttime,偶尔Fewtimes,有时Sometimes, 经常Often和一直Always; 如果用户在识别车牌期间保持沉默,则系统根据车辆上月平均每次停留时长来输入停 车类型,根据车辆上月停车次数输入停车频率Frequency; 如果用户没有说出停车目的,且车辆是第一次驶入停车场,则系统自动将该车辆类型 归类为“购物”,模糊化接口1输入Tpye=0,模糊化接口2输入Frequency=0; S3:计算可靠度指数ReliabilityIndex,如果有用户语音信息,则按照语音信息中的 关键词计算;如果没有用户语音信息,则通过历史数据分析得到可靠度指数; S4:建立隶属函数,将由输入变量、输出变量构成的普通型关系数据库转换为模糊型关 系数据库,普通型数据库共有D个数据元组{d1,d2,…,dD}构成,其相应的模糊型数据库为 {μd1,μd2,…,μdD},其中μ为模糊化隶属度函数,μdk由组 成,k=1,2,…,D,其中和分别是模糊输入的隶属函数,则 是输出的函数; S5:创建模糊规则库,基于if-then的规则表述,利用逻辑,将模糊化输入、输出相关联, 得到初步模糊规则库,其方法为: 若用户明确目的地,则根据模糊化输入量Frequency确定停车位置其划分的原则依照 其历史月驶入的次数;若用户没有明确表达目的地,且不是第一次进入停车场,则系统根据 历史数据确定停车类型;若用户没有明确表达目的地,且是第一次进入停车场,则系统自动 按照目的地为商场直梯来处理; S6:计算模糊规则的支持度,其表述如下:
2.根据权利要求1所述的基于Mamdani算法的停车诱导决策方法,其特征在于:步骤S3 中可靠度指数ReliabilityIndex计算方法如下: S31:如果有用户语音输入,则识别语音信息中的关键词Keyword、汉字个数Length、声 音分贝Loud和语音时长Period; 计算语速和语速指数
3.根据权利要求1所述的基于Mamdani算法的停车诱导决策方法,其特征在于:步骤S4 中模糊化隶属度函数μ采用三角或者钟形隶属度函数,μ的函数初始表达式为:
4.根据权利要求1所述的基于Mamdani算法的停车诱导决策方法,其特征在于:步骤S7 中反模糊化方法采用重心法,利用重心法取隶属度函数曲线与横坐标围成面积的重心推理 最终目标停车位,其计算公式如下:
1.一种基于Mamdani算法控制的停车诱导决策方法,包括用于输入车辆种类的模糊化 接口1和用于输入停车频率的模糊化接口2,其特征在于,包括以下步骤: S1:按照停车场电梯终点和特征,将电梯分为四类:直达商场的商场直梯,悠闲到达商 场的扶手电梯,直达电影院的电影院直梯和直达写字楼的写字楼直梯; 按照上月车辆平均每次停留时长,将停车场内的停车类型Type分为四种,即模糊化接 口1的输入:时长为0~1小时定义为“短暂停留”,时长为1~2小时定义为“购物”,时长为2~ 3小时定义为“看电影或吃饭”,时长为3~24小时定义为“工作”; 按照上月车辆停车次数Times,划分停车频率Frequency,停车次数为0~30次的,记其 停车频率为停车次数,即Frequency=Times;停车次数为31~40次的,记其停车频率为31; 停车次数大于40次的,记其停车频率为32; 停车类型和停车频率均记录在系统后台数据仓库; S2:车牌识别与语音输入甄别,用户可以在停车场入口识别车牌时,说出停车目的,系 统自动甄别停车类型,停车类型为“短暂停留”的,模糊化接口1输入Type=-1;停车类型为 “购物”的,模糊化接口1输入Type=0;停车类型为“看电影或吃饭”的,模糊化接口1输入 Type=1;停车类型为“工作”的,模糊化接口1输入Type=1; 根据用户语音信息输入频率程度,识别语音信息中的关键词Keyword,利用语音识别技 术匹配5种不同的程度化词语,分别为第一次Firsttime,偶尔Fewtimes,有时Sometimes, 经常Often和一直Always; 如果用户在识别车牌期间保持沉默,则系统根据车辆上月平均每次停留时长来输入停 车类型,根据车辆上月停车次数输入停车频率Frequency; 如果用户没有说出停车目的,且车辆是第一次驶入停车场,则系统自动将该车辆类型 归类为“购物”,模糊化接口1输入Tpye=0,模糊化接口2输入Frequency=0; S3:计算可靠度指数ReliabilityIndex,如果有用户语音信息,则按照语音信息中的 关键词计算;如果没有用户语音信息,则通过历史数据分析得到可靠度指数; S4:建立隶属函数,将由输入变量、输出变量构成的普通型关系数据库转换为模糊型关 系数据库,普通型数据库共有D个数据元组{d1,d2,…,dD}构成,其相应的模糊型数据库为 {μd1,μd2,…,μdD},其中μ为模糊化隶属度函数,μdk由组 成,k=1,2,…,D,其中和分别是模糊输入的隶属函数,则 是输出的函数; S5:创建模糊规则库,基于if-then的规则表述,利用逻辑,将模糊化输入、输出相关联, 得到初步模糊规则库,其方法为: 若用户明确目的地,则根据模糊化输入量Frequency确定停车位置其划分的原则依照 其历史月驶入的次数;若用户没有明确表达目的地,且不是第一次进入停车场,则系统根据 历史数据确定停车类型;若用户没有明确表达目的地,且是第一次进入停车场,则系统自动 按照目的地为商场直梯来处理; S6:计算模糊规则的支持度,其表述如下:
2.根据权利要求1所述的基于Mamdani算法的停车诱导决策方法,其特征在于:步骤S3 中可靠度指数ReliabilityIndex计算方法如下: S31:如果有用户语音输入,则识别语音信息中的关键词Keyword、汉字个数Length、声 音分贝Loud和语音时长Period; 计算语速和语速指数
3.根据权利要求1所述的基于Mamdani算法的停车诱导决策方法,其特征在于:步骤S4 中模糊化隶属度函数μ采用三角或者钟形隶属度函数,μ的函数初始表达式为:
4.根据权利要求1所述的基于Mamdani算法的停车诱导决策方法,其特征在于:步骤S7 中反模糊化方法采用重心法,利用重心法取隶属度函数曲线与横坐标围成面积的重心推理 最终目标停车位,其计算公式如下:
技术领域
本发明涉及模糊控制领域,具体是一种面向自然语言,利用沉淀的元数据信息进 行诱导停车的决策方法。
背景技术
由于国内经济发展呈层次化、阶梯化的形态,因此对于智慧停车场的需求和理解 也呈现了不同的状态。简而言之,经济欠发达地区对于停车场资源透明度、可视度的处理尚 未完善,因为汽车数量不及一、二线城市多,对于停车场的需求也呈现了差异化;对于经济 高度发展的大型城市而言,城市公共或私有停车场都做到了信息透明,可以实时的呈现在 网页端,甚至一些移动客户端上。但关于停车场内的诱导停车服务却做得不尽如意,主要表 现在以下几个方面:
(1)简单粗暴的元数据。由于技术能力的落后,一些停车场只通过简单的车位识别 和加法运算处理后的“元数据”展现给被服务主体。车辆驾驶者并无法从这些基础的数据中 得到直接的帮助,例如,前方有23个车位,左侧有34个车位。这只是信息的展示,换句话说这 简单粗暴的诱导只能叫做ParkingGuidanceandInformation(PGI)。大量的原始数据并 没有完全处理,系统没有发掘出其背后的意义。
(2)无处不在的RFID。为了提供形式上“一对一”有针对性的诱导服务,停车场的管 理系统不得不掌握车辆的位置,因此就需要一定数量的RFID遍布整个停车场,并实时与汽 车进行信息识别。这种形式的诱导停车看似感知了整个环境和被服务主体,实际上只是在 堆砌同类型的硬件而已。利用RFID或者NFC技术来明确个人标识,并没有主动匹配用户需求 与停车场的资源。
(3)免费的移动软件客户端。为了得到能够更好的呈现效果和用户体验,停车场管 理者不遗余力的开发各种移动终端上的APP,用来展示停车场信息。然而得到的效果却不是 那么的明显,主要原因有以下几点:
a.由于电信运营商的网速限制或者移动终端的性能不一,导致用户体验有了差异 化。用户不能实时地获得一手信息,也就不能及时地作出判断。
b.信息的展现与互动是建立在用户统一的软件界面,甚至是相同的硬件架构之上 的。对于停车场的老用户尚不能普及,更不用说新来的用户了。更何况每个停车场的管理系 统平台不一样,这样对于用户的耐心、其手机的性能都是一种负担。
综上所述,现阶段国内停车场的智能诱导服务做的尚未完善,用户的需求分析不 明朗、体验感欠缺,现阶段主要受困于以下几个方面的问题:
(1)停车场不能准确把握被服务者需求;
(2)驶入汽车限于技术只能被动接受信息;
(3)需要被服务主体拥有统一的软、硬件平台的因素。
发明内容
为了解决上述现有技术存在的缺陷,本发明提供了一种基于Mamdani算法的停车 诱导决策方法,能够发掘历史数据库中更深层的意义,能够主动匹配用户需求和停车场资 源。
本发明采用的技术方案:一种基于Mamdani算法控制的停车诱导决策方法,包括用 于输入车辆种类的模糊化接口1和用于输入停车频率的模糊化接口2,包括以下步骤:
S1:按照停车场电梯终点和特征,将电梯分为四类:直达商场的商场直梯,悠闲到 达商场的扶手电梯,直达电影院的电影院直梯和直达写字楼的写字楼直梯;
按照上月车辆平均每次停留时长,将停车场内的停车类型Type分为四种,即模糊 化接口1的输入:时长为0~1小时定义为“短暂停留”,时长为1~2小时定义为“购物”,时长 为2~3小时定义为“看电影或吃饭”,时长为3~24小时定义为“工作”;
按照上月车辆停车次数Times,划分停车频率Frequency,停车次数为0~30次的, 记其停车频率为停车次数,即Frequency=Times;停车次数为31~40次的,记其停车频率为 31;停车次数大于40次的,记其停车频率为32;
停车类型和停车频率均记录在系统后台数据仓库;
S2:车牌识别与语音输入甄别,用户可以在停车场入口识别车牌时,说出停车目 的,系统自动甄别停车类型,停车类型为“短暂停留”的,模糊化接口1输入Type=-1;停车类 型为“购物”的,模糊化接口1输入Type=0;停车类型为“看电影或吃饭”的,模糊化接口1输 入Type=1;停车类型为“工作”的,模糊化接口1输入Type=1;
根据用户语音输入信息或车辆上月停车频率,模糊化接口2输入停车频率 Frequency;
如果用户在识别车牌期间保持沉默,则系统根据车辆上月平均每次停留时长来输 入停车类型,根据车辆上月停车次数输入停车频率;
如果用户没有说出停车目的,且车辆是第一次驶入停车场,则系统自动将该车辆 类型归类为“购物”,模糊化接口1输入Tpye=0,模糊化接口2输入Frequency=0;
S3:计算可靠度指数ReliabilityIndex,如果有用户语音信息,则按照语音信息 中的关键词计算;如果没有用户语音信息,则通过历史数据分析得到可靠度指数;
S4:建立隶属函数,将由输入变量、输出变量构成的普通型关系数据库转换为模糊 型关系数据库,普通型数据库共有D个数据元组{d1,d2,…,dD}构成,其相应的模糊型数据库 为{μd1,μd2,…,μdD},其中μ为模糊化隶属度函数,μdk由组成,k=1,2,…,D,其中和分别是模糊输入的隶属函数,则是输出的函数;
S5:创建模糊规则库,基于if-then的规则表述,利用逻辑,将模糊化输入、输出相 关联,得到初步模糊规则库,其方法为:
若用户明确目的地,则根据模糊化输入量Frequency确定停车位置,其划分的原则 依照其历史月驶入的次数,如图4;若用户没有明确表达目的地,且不是第一次进入停车场, 则系统根据历史数据确定停车类型;若用户没有明确表达目的地,且是第一次进入停车场, 则系统自动按照目的地为商场直梯来处理;
S6:计算模糊规则的支持度,其表述如下:
完成初步模糊规则库后,通过计算模糊规则的支持度,筛选支持度最高的规则,除 去支持度低于0.5的冗余规则,得到完备模糊规则库;
S7:反模糊化过程,采用反模糊化方法从模糊型数据库中获得精确结果;
S8:诱导停车,通过步骤S7得出的汽车目标停车位,通过显示手段向驾驶员传递最 终结果;
S9:汽车驶出停车场后,将步骤S7中的系统推理结果、系统后天数据仓库中的汽车 目标地类型和汽车真实停车类型进行比较后,进行数据更新和用户习惯升级,其计算方法 如下:
公式中,
Typeupdate--最后更新的Type数据;
Times--系统后台数据仓库中既有数据;
Typecalculate--步骤S7得到的结果;
Typeexistence--系统后台数据仓库中原有的Type数值;
Typethis--根据汽车真实停留时间得到的汽车Type数值。
优选的,步骤S3中可靠度指数ReliabilityIndex计算方法如下:
S31:如果有用户语音输入,则识别语音信息中的关键词Keyword、汉字个数 Length、声音分贝Loud和语音时长Period;
计算语速
其中,[0.3,0.33]为语速正常范围区间A,a和b为关键词Keyword所对应的语速指 数区间[a,b]的上下限;关键词第一次Firsttime,偶尔Fewtimes,有时Sometimes,经常 Often,一直Always,对应的五个语速指数区间分别为[0,0.3];[0,0.6];[0.2,0.8];[0.4, 1];[0.7,1];若识别不出有效关键词,则归类为第一次Firsttime;
计算ReliabilityIndex=Loud*Speed’,实际声音分贝大于40时,取Loud=1,实 际分贝在20-40之间时,取Loud=0.5,实际分贝小于20时,取Loud=0.1。
S32:如果没有语音输入,可靠度指数通过历史数据分析得到,具体如下:
优选的,步骤S4中模糊化隶属度函数μ采用三角或者钟形隶属度函数,μ的函数初 始表达式为:
E为常数1,控制隶属函数的幅值;
t为隶书函数的取值范围;
b为钟形曲线的平移量。
优选的,步骤S7中反模糊化方法采用重心法,利用重心法取隶属度函数曲线与横 坐标围成面积的重心推理最终目标停车位,其计算公式如下:
公式中,
Cx--重心的x坐标;
Cy--重心的y坐标;
Dix--第i个模糊规则的x坐标;
Diy--第i个模糊规则的y坐标;
Vi--模糊化输入的三角或者钟形隶属函数。
本发明的有益效果:本发明利用Mamdani算法,将自然语言与历史数据相结合,经 过模糊化处理和反模糊化推理得出最合适的停车位置,一方面解决了短时间内对用户直接 需求的有效分析,另一方面可以有效地将沉淀的数据用来辅助决策,变废为宝,使停车诱导 走向主动式的服务模式。
附图说明
图1是本发明Mamdani算法模型的基本组成;
图2是本发明Mamdani算法控制原理图;
图3是本发明的停车场平面示意图;
图4是本发明模糊化输入Frequency的图形;
图5是自然语言的模糊化输入隶属函数图形;
图6是本发明模糊化输入Reliability的图形;
图7是本发明模糊化输入target的图形;
图8是本发明的模糊规则图形示例;
图9是本发明Type、Frequency、Reliability和Target之间的映射曲面图;
图10是本发明的实施例二的图示。
具体实施方式
为了进一步表述本发明技术方案的细节及其优点,现结合附图和实施例进行说 明。
一种基于Mamdani算法控制的停车诱导决策方法,包括用于输入车辆种类的模糊 化接口1和用于输入停车频率的模糊化接口2,具体包括以下步骤:
S1:按照停车场电梯终点和特征,将电梯分为四类:直达商场的商场直梯,悠闲到 达商场的扶手电梯,直达电影院的电影院直梯和直达写字楼的写字楼直梯,如图3所示,其 中,四种电梯位置信息赋值如下:
商场直梯(Lift)=-1;扶手电梯(Escalator)=0;
电影院直梯(Elevator__Movie)=1;写字楼直梯(Elevator__Work)=2。
按照上月车辆平均每次停留时长,系统将停车场内的停车类型Type分为四种,即 模糊化接口1的输入:时长为0~1小时定义为“短暂停留”,时长为1~2小时定义为“购物”, 时长为2~3小时定义为“看电影或吃饭”,时长为3~24小时定义为“工作”,具体如下:
上述表达式为系统后台定义的四种停车类型,是根据上月平均停车时长决定的分 段函数,其中平均时段Duration为前月停泊总小时数除以总次数的商,并下取整
其中,暂时停留(0~1小时)的顾客需要通过乘坐商场直梯后快速购买,逛街(1~2 小时)的顾客可以悠闲地乘坐扶手电梯;而长时间停泊(2~24小时)的顾客有可能是看电 影、用餐或是工作。
按照上月车辆停车次数Times,划分停车频率Frequency,停车次数为0~30次的, 记其停车频率为停车次数,即Frequency=Times;停车次数为31~40次的,记其停车频率为 31;停车次数大于40次的,记其停车频率为32,具体如下:
其中,31与32作为特殊值来约束边界条件。
停车类型和停车频率均记录在系统后台数据仓库,即历史数据库;
S2:车牌识别与语音输入甄别,用户可以在停车场入口识别车牌时,说出停车目 的,系统自动甄别停车类型,停车类型为“短暂停留”的,模糊化接口1输入Type=-1;停车类 型为“购物”的,模糊化接口1输入Type=0;停车类型为“看电影或吃饭”的,模糊化接口1输 入Type=1;停车类型为“工作”的,模糊化接口1输入Type=1。
根据用户语音输入信息,如图5所示,或车辆上月停车频率,模糊化接口2输入停车 频率Frequency。
如果用户在识别车牌期间保持沉默,则系统根据车辆上月平均每次停留时长来输 入停车类型,根据车辆上月停车次数输入停车频率。
如果用户没有说出停车目的,且车辆是第一次驶入停车场,则系统自动将该车辆 类型归类为“购物”,模糊化接口1输入Tpye=0,模糊化接口2输入Frequency=0。
S3:计算可靠度指数ReliabilityIndex,如果有用户语音信息,则按照语音信息 中的关键词计算;如果没有用户语音信息,则通过历史数据分析得到可靠度指数;可靠度指 数将用于模糊化过程,相当于将输入信息加权,进而用于二次分析数据来源的可靠程度。
S4:建立隶属函数,将由输入变量、输出变量构成的普通型关系数据库转换为模糊 型关系数据库,当普通型数据库共有D个数据元组{d1,d2,…,dD}构成时,其相应的模糊型数 据库为{μd1,μd2,…,μdD},其中μ为模糊化隶属度函数,μdk由 组成,k=1,2,…,D,其中和分别是模糊输入的隶属函数,则是输出的函数。
S5:创建模糊规则库,基于if-then的规则表述,利用逻辑,将模糊化输入、输出相 关联,得到初步模糊规则库,其方法为:
若用户明确目的地,则根据模糊化输入量Frequency确定停车位置,其划分的原则 依照其历史月驶入的次数,如图4;若用户没有明确表达目的地,且不是第一次进入停车场, 则系统根据历史数据确定停车类型;若用户没有明确表达目的地,且是第一次进入停车场, 则系统自动按照目的地为商场直梯来处理。以用户的目的是看电影为例,具体步骤如下:
S5.1:若用户语音表示去影城,则模糊输入量Type的值为1,规则将为:
ifType=1andFrequencythenTarget=1,表示若用户明确目的地,则根据模 糊化输入量Frequency确定停车位的位置;
S5.2:若用户没有明确表达影城为目的地,并且不是第一次进入停车场,根据模糊 输入量ReliabilityIndex、Frequency和后台数据来制定,若用户的行为为经常性的习惯 及Frequency属于偶尔、经常等如图4,则规则可表达为:
ifFrequency=OftenandTpye=1andReliabilityIndex〉0.65thenTarget =1(1)
ifFrequency=AlwaysandTpye=1andReliabilityIndex〉0.5thenTarget =1(2)
ifFrequency=31andTpye=1thenTarget=1(3)
其中,规则(1)表示当可靠性达到0.65并且后台历史数据表示为偶尔来看电影, 则目标泊车点在影城直梯附近;规则(2)表示当可靠性达到0.5并且后台历史数据表示为常 常来看电影,则目标泊车点在影城直梯附近。Frequency的频率越高,规则对于可靠性参数 的依赖也就越低。
S5.3:若用户既没有明确表达目的地,也是第一次驶入停车场,则系统自动按照商 场直梯的目的地处理,模糊输入量Type、ReliabilityIndex、Frequency分别默认为-1、0、 0;具体规则为:
ifType=1andnotReliabilityIndexandnotFrequencythenTarget=- 1。
S6:计算模糊规则的支持度。
Mamdani算法控制就是将自然语言通过if-then的规则转换成可量化的数学表达 式,其中模糊规则也如同关联规则一般。关联规则是形如X→Y的蕴涵式,其中X和Y分别称为 关联规则的先导(antecedent或left-hand-side,LHS)和后继(consequent或right-hand- side,RHS)。关联规则X和Y,存在支持度,因此,支持度是检验规则有效性的一种途径,使得 系统对于任意给定的输入均有相应的控制规则作用。
具体地说,模糊规则就是联系模糊输入和输出的一种羁绊,通过if-then的逻辑表 达式展现的。本发明中有三种模糊输入,分别是两种自然语言和一种后台数据提取信息,其 相应的规则的表示如下例子所示:If“看电影的车子&&经常来看电影&&系统后台信息确认 经常来”then“目标停车位靠近电影院直梯”。
本发明定义模糊规则支持度表述如下:
完成初步模糊规则库后,通过计算模糊规则的支持度,筛选支持度最高的规则,除 去支持度小于0.5的冗余规则,得到完备模糊规则库,具体地说,就是在众多的模糊规则中 需要设计每个模糊化的输入,并且在相仿规则中选取支持度最大的规则。停车场管理者也 可以根据需求,修改或者添加模糊规则以满足管理要求。
S7:反模糊化过程,采用反模糊化方法从模糊型数据库中获得精确结果;
S8:诱导停车,通过步骤S7得出的汽车目标停车位,通过显示手段向驾驶员传递最 终结果;
S9:汽车驶出停车场后,将步骤S7中的系统推理结果、系统后天数据仓库中的汽车 目标地类型和汽车真实停车类型进行比较后,进行数据更新和用户习惯升级,其计算方法 如下:
公式中,
Typeupdate--最后更新的Type数据;
Times--系统后台数据仓库中既有数据;
Typecalculate--步骤S7得到的结果;
Typeexistence--系统后台数据仓库中原有的Type数值;
Typethis--根据汽车真实停留时间得到的汽车Type数值。
其中,步骤S3中可靠度指数ReliabilityIndex计算方法如下:
S31:如果有用户语音输入,则识别语音信息中的关键词Keyword、汉字个数 Length、声音分贝Loud和语音时长Period;
计算语速
其中,[0.3,0.33]为语速正常范围区间A,a和b为关键词Keyword所对应的语速指 数区间[a,b]的上下限;关键词第一次Firsttime,偶尔Fewtimes,有时Sometimes,经常 Often,一直Always,对应的五个语速指数区间分别为[0,0.3];[0,0.6];[0.2,0.8];[0.4, 1];[0.7,1];若识别不出有效关键词,则归类为第一次Firsttime;
计算ReliabilityIndex=Loud*Speed’;实际声音分贝大于40时,取Loud=1,实 际分贝在20-40之间时,取Loud=0.5,实际分贝小于20时,取Loud=0.1。
S32:如果没有语音输入,可靠度指数通过历史数据分析得到,具体如下:
步骤S4中模糊化隶属度函数μ采用三角或者钟形隶属度函数,本实施例中,μ的函 数初始表达式为:
E为常数1,控制隶属函数的幅值;
t为隶书函数的取值范围;
b为钟形曲线的平移量。
步骤S7中反模糊化方法采用重心法,如图8所示,利用重心法取隶属度函数曲线与 横坐标围成面积的重心推理最终目标停车位,其计算公式如下:
公式中,
Cx--重心的x坐标;
Cy--重心的y坐标;
Dix--第i个模糊规则的x坐标;
Diy--第i个模糊规则的y坐标;
Vi--模糊化输入的三角或者钟形隶属函数。
实施例一:
用户为该CBD综合体的上班族,上个月上班全勤,天数为26天。该用户驾车驶入停车场识 别车牌时表示“我经常在这里工作”,声音分贝为58,用时1.953秒,其中关键词Keyword对应的程 度化词语为Often,Speed=1.953/6=0.3255,属于正常语速,声音分贝为58,大于40,取Loud =1。因此,得到自然语言输入的可靠度指数
通过FuzzyEditor的18条模糊规则运算(如图8),基于重心法系统自动得出汽车 目标停车位为1.9。通过基于Mamdani的诱导停车决策表明,其最适宜停靠的位置为靠近写 字楼电梯附近的1.9位置。Type、Frequency、Reliability和Target之间的映射曲面如图9所 示。
在汽车驶出停车场之后,将系统初始预测结果、系统后台历史数据仓库的汽车目 标地类型信息Type和真实汽车驶出信息进行比较后,进行数据更新和用户习惯升级,最终 更新后的Typeupdate如下,
实施例二:
用户上个月停车次数为12次,今天再次驶入该CBD综合体。在进入停车场的时候并 没有任何自然语言的输入。假设根据系统上次自学习的结果,其目标停车位为0.03。系统计 算出其可靠指数ReliabilityIndex=0.67*(0.45+(12-13.5)/30=0.268,根据Mamdani模 型得出其目标位置为0.015,如图10。当其驶出停车场时,系统发现停车时间为3个小时,则 系统自学习结果如下: